in

Characterization of deep-sea benthic invertebrate megafauna of the Galapagos Islands

  • 1.

    Darwin, C. The Voyage of the Beagle (1839).

  • 2.

    Forbes, E. Report on the Mollusca and Radiata of the Aegean Sea: And on Their Distribution, Considered as Bearing on Geology (1843).

  • 3.

    De La Beche, H. T. Researches in Theoretical Geology (FJ Huntington & co., New York, 1837).

    Google Scholar 

  • 4.

    Darwin, C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life (John Murray, Hachette, 1859).

    Google Scholar 

  • 5.

    Caccone, A. et al. Phylogeography and history of giant Galápagos tortoises. Evolution 56, 2052–2066 (2002).

    PubMed  Google Scholar 

  • 6.

    Grant, P. R. Ecology and Evolution of Darwin’s Finches (Princeton University Press, Princeton, 1999).

    Google Scholar 

  • 7.

    Wikelski, M. & Thom, C. Marine iguanas shrink to survive El Niño. Nature 403, 37–38 (2000).

    ADS  CAS  PubMed  Google Scholar 

  • 8.

    Glynn, P. W. & Wellington, G. M. Corals and Coral Reefs of the Galapagos Islands (University of California Press, California, 1983).

    Google Scholar 

  • 9.

    McCosker, J. E. & Rosenblatt, R. H. The fishes of the Galápagos Archipelago: an update. Proc. Calif. Acad. Sci. 61, 167–195 (2010).

    Google Scholar 

  • 10.

    Salinas de León, P. et al. Largest global shark biomass found in the northern Galápagos Islands of Darwin and Wolf. PeerJ 4, e1911 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 11.

    Wellington, G. M. The Galápagos coastal marine environment (1975).

  • 12.

    Witman, J. D. & Smith, F. Rapid community change at a tropical upwelling site in the Galápagos Marine Reserve. Biodivers. Conserv. 12, 25–45 (2003).

    Google Scholar 

  • 13.

    Corliss, J. B., Dymond, J., Gordon, L. I. & Edmond, J. M. on the Galapagos Rift. Science 203, 16 (1979).

    Google Scholar 

  • 14.

    Hessler, R. R. & Smithey Jr, W. M. The distribution and community structure of megafauna at the Galapagos Rift hydrothermal vents. In Hydrothermal Processes at Seafloor Spreading Centers 735–770 (Springer, 1983).

  • 15.

    Harpp, K. S. & White, W. M. Tracing a mantle plume: isotopic and trace element variations of Galápagos seamounts. Geochem. Geophys. Geosystems 2 (2001).

  • 16.

    Lubetkin, M. et al. Nontronite-bearing tubular hydrothermal deposits from a Galapagos seamount. Deep Sea Res. Part II Top. Stud. Oceanogr. https://doi.org/10.1016/j.dsr2.2017.09.017 (2017).

    Article  Google Scholar 

  • 17.

    Karl, D. M., Wirsen, C. & Jannasch, H. Deep-sea primary production at the Galapagos hydrothermal vents. Sci. States 207, 1345–1347 (1980).

    CAS  Google Scholar 

  • 18.

    Rhoads, D. C., Lutz, R. A., Revelas, E. C. & Cerrato, R. M. Growth of bivalves at deep-sea hydrothermal vents along the Galapagos Rift. Science 214, 911–913 (1981).

    ADS  CAS  PubMed  Google Scholar 

  • 19.

    Van Dover, C. L., Berg Jr, C. J. & Turner, R. D. Recruitment of marine invertebrates to hard substrates at deep-sea hydrothermal vents on the East Pacific Rise and Galapagos spreading center. Deep Sea Res. Part Oceanogr. 35, 1833–1849 (1988).

    ADS  Google Scholar 

  • 20.

    Iwamoto, T. & McCosker, J. E. Notes on Galápagos grenadiers (Pisces, Gadiformes, Macrouridae), with the description of a new species of Coryphaenoides. Rev. Biol. Trop. 49, 21–27 (2001).

    PubMed  Google Scholar 

  • 21.

    Long, D. J., McCosker, J. E., Blum, S. & Klapfer, A. Tropical Eastern Pacific records of the prickly shark, Echinorhinus cookei (Chondrichthyes: Echinorhinidae). Pac. Sci. 65, 433–440 (2011).

    Google Scholar 

  • 22.

    McCosker, J. E., Long, D. J. & Baldwin, C. C. Description of a new species of deepwater catshark, Bythaelurus giddingsi sp. Nov., from the Galápagos Islands (Chondrichthyes: Carcharhiniformes: Scyliorhinidae). Zootaxa 59, 48–59 (2012).

    Google Scholar 

  • 23.

    Cerutti-Pereyra, F., Yanez, A., Ebert, D. A., Arnés-Urgellés, C. & Salinas-De-León, P. New record and range extension of the deepsea skate, Bathyraja Abyssicola (Chondrichthyes: Arhynchobatidae). The Galapagos Islands. https://doi.org/10.5281/zenodo.1400829 (2018).

    Article  Google Scholar 

  • 24.

    Cairns, S. D. Deep-water octocorals (Cnidaria, Anthozoa) from the Galápagos and Cocos Islands. Part 1: Suborder Calcaxonia. ZooKeys 729, 1–46 (2018).

    Google Scholar 

  • 25.

    Cairns, S. D. New records of Stylasteridae (Hydrozoa: Hydroida) from the Galápagos and Cocos Islands (1991).

  • 26.

    Faxon, W. Reports on an exploration off the west coast of Mexico, Central and South America, and off the Galapagos Islands by the US Fish Commission steamer «Albatross» during 1891…. XV. Mem. Mus. Comp. Zool. 18, 1–292 (1895).

    Google Scholar 

  • 27.

    Ramirez-Llodra, E. et al. Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem. Biogeosciences 7, 2851–2899 (2010).

    ADS  Google Scholar 

  • 28.

    Appeltans, W. et al. The magnitude of global marine species diversity. Curr. Biol. 22, 2189–2202 (2012).

    CAS  PubMed  Google Scholar 

  • 29.

    Archer, S. K. et al. Pyrosome consumption by benthic organisms during blooms in the northeast Pacific and Gulf of Mexico. Ecology 99, 981–984 (2018).

    PubMed  Google Scholar 

  • 30.

    Gates, A. R., Morris, K. J., Jones, D. O. & Sulak, K. J. An association between a cusk eel (Bassozetus sp.) and a black coral (Schizopathes sp.) in the deep western Indian Ocean. Mar. Biodivers. 47, 971–977 (2017).

    Google Scholar 

  • 31.

    Salinas-de-León, P. et al. Deep-sea hydrothermal vents as natural egg-case incubators at the Galapagos Rift. Sci. Rep. 8, 1788 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 32.

    Harris, P., Macmillan-Lawler, M., Rupp, J. & Baker, E. Geomorphology of the oceans. Mar. Geol. 352, 4–24 (2014).

    ADS  Google Scholar 

  • 33.

    Geist, D. J., Snell, H., Snell, H., Goddard, C. & Kurz, M. D. A paleogeographic model of the Galápagos Islands and biogeographical and evolutionary implications. Galápagos Nat. Lab. Earth Sci. Am. Geophys. Union Wash. DC USA 145–166 (2014).

  • 34.

    Morato, T., Hoyle, S. D., Allain, V. & Nicol, S. J. Seamounts are hotspots of pelagic biodiversity in the open ocean. Proc. Natl. Acad. Sci. 107, 9707–9711 (2010).

    ADS  CAS  PubMed  Google Scholar 

  • 35.

    Pitcher, T. J. et al. Seamounts: Ecology, Fisheries & Conservation (Wiley, Hoboken, 2008).

    Google Scholar 

  • 36.

    Rogers, A. The biology of seamounts. Adv. Mar. Biol. 30, 305–350 (1994).

    Google Scholar 

  • 37.

    Genin, A., Dayton, P. K., Lonsdale, P. F. & Spiess, F. N. Corals on seamount peaks provide evidence of current acceleration over deep-sea topography. Nature 322, 59 (1986).

    ADS  Google Scholar 

  • 38.

    Palacios, D. M. Seasonal patterns of sea-surface temperature and ocean color around the Galápagos: regional and local influences. Deep-Sea Res. Part II Top. Stud. Oceanogr. 51, 43–57 (2004).

    ADS  Google Scholar 

  • 39.

    Edgar, G. J., Banks, S., Fariña, J. M., Calvopiña, M. & Martínez, C. Regional biogeography of shallow reef fish and macro-invertebrate communities in the Galapagos archipelago. J. Biogeogr. 31, 1107–1124 (2004).

    Google Scholar 

  • 40.

    Koslow, J. et al. Continental slope and deep-sea fisheries: implications for a fragile ecosystem. ICES J. Mar. Sci. 57, 548–557 (2000).

    Google Scholar 

  • 41.

    Watling, L. & Norse, E. A. Disturbance of the seabed by mobile fishing gear: a comparison to forest clearcutting. Conserv. Biol. 12, 1180–1197 (1998).

    Google Scholar 

  • 42.

    Breedy, O., van Ofwegen, L. P. & Vargas, S. A new family of soft corals (Anthozoa, Octocorallia, Alcyonacea) from the aphotic tropical eastern Pacific waters revealed by integrative taxonomy. Syst. Biodivers. 10, 351–359 (2012).

    Google Scholar 

  • 43.

    Ardron, J. A. et al. A systematic approach towards the identification and protection of vulnerable marine ecosystems. Mar. Policy 49, 146–154 (2014).

    Google Scholar 

  • 44.

    Halpern, B. S., Selkoe, K. A., Micheli, F. & Kappel, C. V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 21, 1301–1315 (2007).

    PubMed  Google Scholar 

  • 45.

    Miloslavich, P. et al. Marine biodiversity in the atlantic and pacific coasts of south america: knowledge and gaps. PLoS ONE 6, e14631 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 46.

    Clark, M. R., Schlacher, T. A., Rowden, A. A., Stocks, K. I. & Consalvey, M. Science priorities for seamounts: research links to conservation and management. PLoS ONE 7, e29232 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 47.

    Sinton, C. W., Christie, D. M. & Duncan, R. A. Geochronology of Galápagos seamounts. J. Geophys. Res. Solid Earth 101, 13689–13700 (1996).

    CAS  Google Scholar 

  • 48.

    Christie, D. et al. Drowned islands downstream from the Galapagos hotspot imply extended speciation times. Nature 355, 246 (1992).

    ADS  Google Scholar 

  • 49.

    Watling, L., Guinotte, J., Clark, M. R. & Smith, C. R. A proposed biogeography of the deep ocean floor. Prog. Oceanogr. 111, 91–112 (2013).

    ADS  Google Scholar 

  • 50.

    Dirección del Parque Nacional Galápagos. Plan de Manejo de las Areas Protegidas de Galápagos par el Buen Vivir (2014).

  • 51.

    Carey, S. et al. Exploring the undersea world of the Galápagos Islands. Ocean. Mag 29, 32–34 (2016).

    Google Scholar 

  • 52.

    Salinas-De-León, P., Acuña-Marrero, D., Carrión-Tacuri, J. & Sala, E. Valor ecológico de los ecosistemas marinos de Darwin y Wolf, Reserva Marina de Galápagos. 15 (2015).

  • 53.

    Acuña-Marrero, D. et al. Spatial patterns of distribution and relative abundance of coastal shark species in the Galapagos Marine Reserve. Mar. Ecol. Prog. Ser. 593, 73–95 (2018).

    ADS  Google Scholar 

  • 54.

    Acuña-Marrero, D. et al. Whale shark (Rhincodon typus) seasonal presence, residence time and habitat use at Darwin Island Galapagos Marine Reserve. PLoS ONE 9, e115946 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 55.

    Ministerio del Ambiente del Ecuador. Acuerdo Ministerial 076/2018. (2018).

  • 56.

    Ramirez-Llodra, E. et al. Man and the last great wilderness: human impact on the deep sea. PLoS ONE 6, e22588 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 57.

    Roberts, C. M. Deep impact: the rising toll of fishing in the deep sea. Trends Ecol. Evol. 17, 242–245 (2002).

    MathSciNet  Google Scholar 

  • 58.

    Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).

    ADS  CAS  PubMed  Google Scholar 

  • 59.

    Danovaro, R., Dell’Anno, A. & Pusceddu, A. Biodiversity response to climate change in a warm deep sea: biodiversity and climate change in the deep sea. Ecol. Lett. 7, 821–828 (2004).

    Google Scholar 

  • 60.

    Danovaro, R., Dell’Anno, A., Fabiano, M., Pusceddu, A. & Tselepides, A. Deep-sea ecosystem response to climate changes: the eastern Mediterranean case study. Trends Ecol. Evol. 16, 505–510 (2001).

    Google Scholar 

  • 61.

    Sweetman, A. K. et al. Major impacts of climate change on deep-sea benthic ecosystems. Elem. Sci. Anthr. 5, 4 (2017).

    Google Scholar 

  • 62.

    Etnoyer, P. et al. Deep-sea coral collection protocols. NOAA Tech. Memo. NMFS-OPR 28 (2006).

  • 63.

    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).

    CAS  PubMed  Google Scholar 

  • 64.

    Lemmon, A. R., Emme, S. A. & Lemmon, E. M. Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst. Biol. 61, 727–744 (2012).

    CAS  PubMed  Google Scholar 

  • 65.

    Wieczorek, J. et al. Darwin core: an evolving community-developed biodiversity data standard. PLoS ONE 7, e29715 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 66.

    Ontrup, J., Ehnert, N., Bergmann, M. & Nattkemper, T. W. BIIGLE-Web 2.0 Enabled Labelling and Exploring of Images from the Arctic Deep-Sea Observatory HAUSGARTEN. 1–7 (IEEE, 2009).


  • Source: Ecology - nature.com

    Environmentally induced phenotypic plasticity and DNA methylation changes in a wild potato growing in two contrasting Andean experimental gardens

    Biodiversity scientists must fight the creeping rise of extinction denial