in

Citizen science via social media revealed conditions of symbiosis between a marine gastropod and an epibiotic alga

  • 1.

    Wahl, M. Ecological lever and interface ecology: epibiosis modulates the interactions between host and environment. Biofouling 24, 427–438 (2008).

    Article  Google Scholar 

  • 2.

    Gutiérrez, J. L., Jones, C. G., Strayer, D. L. & Iribarne, O. O. Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101, 79–90 (2003).

    Article  Google Scholar 

  • 3.

    Carrapiço, F. How symbiogenic is evolution ?. Theory Biosci. 129, 135–139 (2010).

    Article  Google Scholar 

  • 4.

    Apprill, A. The role of symbioses in the adaptation and stress responses of marine organisms. Ann. Rev. Mar. Sci. 12, 291–314 (2020).

    Article  Google Scholar 

  • 5.

    van Ommeren, R. J. & Whitham, T. G. Changes in interactions between juniper and mistletoe mediated by shared avian frugivores : parasitism to potential mutualism. Oecologia 130, 281–288 (2002).

    ADS  Article  Google Scholar 

  • 6.

    Lee, J. H., Kim, T. W. & Choe, C. J. Commensalism or mutualism: conditional outcomes in a branchiobdellid–crayfish symbiosis. Oecologia 159, 217–224 (2009).

    ADS  Article  Google Scholar 

  • 7.

    Bronstein, J. L. Conditional outcomes in mutualistic interactions. Trends Ecol. Evol. 9, 214–217 (1994).

    CAS  Article  Google Scholar 

  • 8.

    Dewitt, P. D., Williams, B. W., Lu, Z., Fard, A. N. & Gelder, S. R. Effects of environmental and host physical characteristics on an aquatic symbiont. Limnologica 43, 151–156 (2013).

    Article  Google Scholar 

  • 9.

    Wahl, M., Goecke, F., Labes, A., Dobretsov, S. & Weinberger, F. The second skin: ecological role of epibiotic biofilms on marine organisms. Front. Microbiol. 3, 1–21 (2012).

    Article  CAS  Google Scholar 

  • 10.

    Lacoste, E. & Gaertner-Mazouni, N. Biofouling impact on production and ecosystem functioning: A review for bivalve aquaculture. Rev. Aquac. 7, 187–196 (2015).

    Article  Google Scholar 

  • 11.

    Sakai, Y. The species of Cladophora from Japan and its vicinity. Sci. Pap. Inst. Algol. Res. Fac. Sci. Hokkaido Univ. 5, 1–104 (1964).

    Google Scholar 

  • 12.

    Matsuyama, K., Aruga, Y. & Tanaka, J. Ecological and morphological studies of Cladophora conchopheria Sakai (Ulvophyceae, Cladophoraceae). J. Jpn .Bot. 74, 136–141 (1999).

    Google Scholar 

  • 13.

    Yajima, T. & Yamada, K. Field experiments on the clinging selection by the green alga Cladophora conchopheria Sakai to the shell surfaces of the coronate moon turban Turbo (Lunella) coronatus coreensis (Recluz). Bull. Jpn. Sea Res. Institute, Kanazawa Univ. Nihon-kaiiki kenkyu 33, 87–94 (2002).

  • 14.

    Yamada, M., Wada, K. & Ohno, T. Observations on the alga Cladophora conchopheria on shells of the intertidal gastropod Turbo coronatus coreensis. Benthos Res. 58, 1–6 (2003).

    ADS  Article  Google Scholar 

  • 15.

    Kagawa, O. & Chiba, S. Snails wearing green heatproof suits: the benefits of algae growing on the shells of an intertidal gastropod. J. Zool. 307, 256–263 (2019).

    Article  Google Scholar 

  • 16.

    Dickinson, J. L. et al. The current state of citizen science as a tool for ecological research and public engagement. Front. Ecol. Environ. 10, 291–297 (2012).

    Article  Google Scholar 

  • 17.

    Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool : challenges and benefits. Annu. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).

    Article  Google Scholar 

  • 18.

    Suzuki-Ohno, Y., Yokoyama, J., Nakashizuka, T. & Kawata, M. Utilization of photographs taken by citizens for estimating bumblebee distributions. Sci. Rep. 7, 1–11 (2017).

    CAS  Article  Google Scholar 

  • 19.

    Luigi Nimis, P. et al. Mapping invasive plants with citizen science. A case study from Trieste (NE Italy). Plant Biosyst. 153, 700–709 (2019).

    Article  Google Scholar 

  • 20.

    Sumner, S., Bevan, P., Hart, A. G. & Isaac, N. J. B. Mapping species distributions in 2 weeks using citizen science. Insect Conserv. Divers. 12, 382–388 (2019).

    Article  Google Scholar 

  • 21.

    Sequeira, A. M. M., Roetman, P. E. J., Daniels, C. B., Baker, A. K. & Bradshaw, C. J. A. Distribution models for koalas in South Australia using citizen science-collected data. Ecol. Evol. 4, 2103–2114 (2014).

    Article  Google Scholar 

  • 22.

    Giovos, I. et al. Citizen-science for monitoring marine invasions and stimulating public engagement: a case project from the eastern Mediterranean. Biol. Invasions 21, 3707–3721 (2019).

    Article  Google Scholar 

  • 23.

    Morii, Y. & Nakano, T. Citizen science reveals the present range and a potential native predator of the invasive slug Limax maximus Linnæus, 1758 in Hokkaido Japan. Bioinvasions Rec. 6, 1–5 (2017).

    Article  Google Scholar 

  • 24.

    Silvertown, J. A new dawn for citizen science. Trends Ecol. Evol. 24, 467–471 (1888).

    Article  Google Scholar 

  • 25.

    Kerstes, N. A. G., Breeschoten, T., Kalkman, V. J. & Schilthuizen, M. Snail shell colour evolution in urban heat islands detected via citizen science. Commun. Biol. 2, 1–11 (2019).

    Article  Google Scholar 

  • 26.

    Rotman, D. et al. Dynamic changes in motivation in collaborative citizen-science projects. In CSCW ’12 Proc. ACM 2012 Conf. Comput. Support. Coop. Work 217–226 (2012). https://doi.org/10.1145/2145204.2145238

  • 27.

    Newman, G. et al. The future of citizen science: emerging technologies and shifting paradigms. Front. Ecol. Environ. 10, 298–304 (2012).

    Article  Google Scholar 

  • 28.

    Brossard, D., Lewenstein, B. & Bonney, R. Scientific knowledge and attitude change: the impact of a citizen science project. Int. J. Sci. Educ. 27, 1099–1121 (2005).

    Article  Google Scholar 

  • 29.

    Schluter, D. The Ecology of Adaptive Radiation (Oxford University Press, Oxford, 2000).

    Google Scholar 

  • 30.

    Williams, S., Apte, D., Ozawa, T., Kaligis, F. & Nakano, T. Speciation and dispersal along continental coastlines and Island arcs in the Indo-West Pacific turbinid gastropod genus Lunella. Evolution (N. Y). 65, 1752–1771 (2011).

    Google Scholar 

  • 31.

    Yukihira, H., Noda, M., Hashimoto, H. & Gushima, K. On the distribution and foraging of the moon Coronate Turban, Lunella coronatacoreensis (Récluz, 1853). J. Fac. Appl. Biol. Sci. Hiroshima Univ. 34, 113–124 (1995).

    Google Scholar 

  • 32.

    Xing, Y. & Wada, K. Temporal and spatial patterns of the alga Cladophora conchopheria on the shell of the intertidal gastropod Turbo coronatus coreensis. Publ. SETO Mar. Biol. Lab. 39, 103–111 (2001).

    Article  Google Scholar 

  • 33.

    Brown, B. L., Creed, R. P., Skelton, J., Rollins, M. A. & Farrell, K. J. The fine line between mutualism and parasitism : complex effects in a cleaning symbiosis demonstrated by multiple field experiments. Oecologia 170, 199–207 (2012).

    ADS  Article  Google Scholar 

  • 34.

    Baeza, J. A. & Stotz, W. Host-use and selection of differently colored sea anemones by the symbiotic crab Allopetrolisthes spinifrons. J. Exp. Mar. Biol. Ecol. 284, 25–39 (2003).

    Article  Google Scholar 

  • 35.

    Takada, Y. Influence of shade and number of boulder layers on mobile organisms on a warm temperate boulder shore. Mar. Ecol. Prog. Ser. 189, 171–179 (1999).

    ADS  Article  Google Scholar 

  • 36.

    Stachowicz, J. J. Mutualism, facilitation, and the structure of ecological communities. Bioscience 51, 235–246 (2001).

    Article  Google Scholar 

  • 37.

    Wahl, M. Increased drag reduces growth of snails: comparison of flume and in situ experiments. Mar. Ecol. Prog. Ser. 151, 291–293 (1997).

    ADS  Article  Google Scholar 

  • 38.

    Wahl, M. Fouled snails in flow: potential of epibionts on Littorina littorea to increase drag and reduce snail growth rates. Mar. Ecol. Prog. Ser. 138, 157–168 (1996).

    ADS  Article  Google Scholar 

  • 39.

    Miller, L. P., Denny, M. W., Station, H. M. & Grove, P. Importance of behavior and morphological traits for controlling body temperature in Littorinid snails. Biol. Bull. 220, 209–223 (2011).

    Article  Google Scholar 

  • 40.

    Chan, D. H. L. & Chan, B. K. K. Effect of epibiosis on the fitness of the sandy shore snail Batillaria zonalis in Hong Kong. Mar. Biol. 146, 695–705 (2005). https://doi.org/10.1007/s00227-004-1468-6.

    Article  Google Scholar 

  • 41.

    Buschbaum, C. & Reise, K. Effects of barnacle epibionts on the periwinkle Littorina littorea (L.). Helgol. Mar. Res. 53, 56–61 (1999).

    ADS  Article  Google Scholar 

  • 42.

    Mouritsen, K. N. & Bay, G. M. Fouling of gastropods: a role for parasites?. Hydrobiologia 418, 243–246 (2000).

    Article  Google Scholar 

  • 43.

    Gerhart, D. J., Rittschof, D. & Mayo, S. W. Chemical ecology and the search for marine antifoulants – Studies of a predator-prey symbiosis. J. Chem. Ecol. 14, 1905–1917 (1988).

    CAS  Article  Google Scholar 

  • 44.

    Solomon Ogunola, O. & Ahmed Onada, O. Anti-biofouling defence mechanism of basibionts (a chemical Warfare)—a critical review. J. Environ. Anal. Toxicol. 6, 380 (2016).

    Article  Google Scholar 

  • 45.

    McGowan, K. L. & Iyengar, E. V. The difference between a rock and a biological hard place: epibionts in the rocky intertidal. Mar. Biol. 164, 1–15 (2017).

    Article  Google Scholar 

  • 46.

    Wahl, M. & Mark, O. The predominantly facultative nature of epibiosis: experimental and observational evidence. Mar. Ecol. Prog. Ser. 187, 59–66 (1999).

    ADS  Article  Google Scholar 

  • 47.

    Harvey, P. H. & Pagel, M. D. The comparative method in evolutionary biology. Trends Ecol. Evol. 239, 239 (1991).

    Google Scholar 

  • 48.

    Braverman, H., Leibovitz, L. & Lewbart, G. A. Green algal infection of American horseshoe crab (Limulus polyphemus) exoskeletal structures. J. Invertebr. Pathol. 111, 90–93 (2012).

    Article  Google Scholar 

  • 49.

    Laudien, J. & Wahl, M. Indirect effects of epibiosis on host mortality: seastar predation on differently fouled mussels. Mar. Ecol. 20, 35–47 (1999).

    ADS  Article  Google Scholar 

  • 50.

    Lyu, J., Auker, L. A., Priyadarshi, A. & Parshad, R. D. The effects of invasive epibionts on crab-mussel communities: a theoretical approach to understand mussel population decline. J. Biol. Syst. 28, 1–40 (2020).

    MathSciNet  MATH  Article  Google Scholar 

  • 51.

    Abe, N. Food and feeding habit of ( preliminary report some carnivorous gastropods. Benthos Res. 19, 39–47 (1980).

    Article  Google Scholar 

  • 52.

    Shigemiya, Y. Does the handedness of the pebble crab Eriphia smithii influence its attack success on two dextral snail species? J. Zool. 260, 259–265 (2003).

    Article  Google Scholar 

  • 53.

    Fujii, A. Predation on young topshell Batillus cornutus by carnivorous marine animals. SUISANZOUSHOKU 39, 123–128 (1991).

    Google Scholar 

  • 54.

    Kohn, A. J. & Leviten, P. J. Effect of habitat complexity on population density and species richness in tropical intertidal predatory gastropod assemblages. Oecologia 25, 199–210 (1976).

    ADS  Article  Google Scholar 

  • 55.

    Menge, B. A. & Sutherland, J. P. Community regulation: Variation in disturbance, competition, and predation in relation to environmental stress and recruitment. Am. Nat. 130, 730–757 (1987).

    Article  Google Scholar 

  • 56.

    Marsh, C. P. Impact of avian predators on high intertidal limpet populations. J. Exp. Mar. Biol. Ecol. 104, 185–201 (1986).

    Article  Google Scholar 

  • 57.

    Kiyosu, Y. Birds of Japan. (koudansya, 1978).

  • 58.

    Nakamura, T. & Nakamura, M. Bird’s life in Japan with color pictures: birds of marsh, shore and ocean. (Hoikusya, 1995).

  • 59.

    Underwood, A. J. & Zoology, P. J. Effects of interactions between algae and grazing gastropods on the structure of a low-shore intertidal algal community. Oecologia 48, 221–233 (1981).

    ADS  CAS  Article  Google Scholar 

  • 60.

    Wada, Y., Iwasaki, K., Ida, T. Y. & Yusa, Y. Roles of the seasonal dynamics of ecosystem components in fluctuating indirect interactions on a rocky shore. Ecology 98, 1093–1103 (2017).

    Article  Google Scholar 

  • 61.

    Wang, X. Y. & Sakai, Y. Life history of Cladophora opaca and Cl. conchopheria (Chlorophyta). Jpn. J. Phycol. 34, 209 (1986).

    Google Scholar 

  • 62.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS  Article  Google Scholar 

  • 63.

    Burrows, M. T. Influences of wave fetch, tidal flow and ocean colour on subtidal rocky communities. Mar. Ecol. Prog. Ser. 445, 193–207 (2012).

    ADS  Article  Google Scholar 

  • 64.

    Kahma, K. K. A study of the growth of the wave spectrum with fetch. J. Phys. Oceanogr. 11, 1503–1515 (1981).

    ADS  Article  Google Scholar 

  • 65.

    Burrows, M. T., Harvey, R. & Robb, L. Wave exposure indices from digital coastlines and the prediction of rocky shore community structure. Mar. Ecol. Prog. Ser. 353, 1–12 (2008).

    ADS  Article  Google Scholar 

  • 66.

    Yamazaki, D., Hirano, T., Uchida, S., Miura, O. & Chiba, S. Relationship between contrasting morphotypes and the phylogeny of the marine gastropod genus Tegula (Vetigastropoda: Tegulidae) in East Asia. J. Molluscan Stud. 85, 92–102 (2019).

    Article  Google Scholar 

  • 67.

    Seers, B. fetchR: Calculate Wind Fetch. (2018). Available at: https://cran.r-project.org/package=fetchR.

  • 68.

    R Core Team. R: A Language and Environment for Statistical Computing. (2018). Available at: https://www.r-project.org/.

  • 69.

    Infrastructure Transport Ministry Tourismof Land. National Land Numerical Information’s download site. (2020). Available at: https://nlftp.mlit.go.jp/ksj/index.html.

  • 70.

    Agency Japan Meteorological. Japan Meteorological Agency website. (2020). Available at: https://www.jma.go.jp/jma/kishou/know/yougo_hp/toki.html.

  • 71.

    Douma, J. C. & Weedon, J. T. Analysing continuous proportions in ecology and evolution : a practical introduction to beta and Dirichlet regression. Methods Ecol. Evol. 10, 1412–1430 (2019).

    Article  Google Scholar 

  • 72.

    Chapperon, C., Studerus, K. & Clavier, J. Mitigating thermal effect of behaviour and microhabitat on the intertidal snail Littorina saxatilis (Olivi) over summer. J. Therm. Biol. 67, 40–48 (2017).

    Article  Google Scholar 

  • 73.

    Keddy, P. A. Quntifying within-lake gradients of wave enagy: interrelationships of wave energy, substrate particle size and shoreline plants in axe lake, ontario. Aquat. Bot. 14, 41–58 (1982).

    Article  Google Scholar 

  • 74.

    Gilks, W. R. & Roberts, G. O. Strategies for improving MCMC. Markov Chain Monte Carlo Pract. 6, 89–114 (1996).

    MATH  Google Scholar 

  • 75.

    Gelman, A. & Shirley, K. Inference from simulations and monitoring convergence. Handb. Markov Chain Monte Carlo 6, 163–174 (2011).

    MathSciNet  MATH  Google Scholar 

  • 76.

    Kruschke, J. K. Bayesian estimation supersedes the t test. J Exp Psychol 142, 573–603 (2013).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Power-free system harnesses evaporation to keep items cool

    Plant part and a steep environmental gradient predict plant microbial composition in a tropical watershed