in

Climate-driven changes in the composition of New World plant communities

[adace-ad id="91168"]
  • 1.

    Zhang, T., Niinemets, Ü., Sheffield, J. & Lichstein, J. W. Shifts in tree functional composition amplify the response of forest biomass to climate. Nature 556, 99–102 (2018).

    CAS  Google Scholar 

  • 2.

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    CAS  Google Scholar 

  • 3.

    Parmesan, C. & Hanley, M. E. Plants and climate change: complexities and surprises. Ann. Bot. 116, 849–864 (2015).

    Google Scholar 

  • 4.

    Telwala, Y., Brook, B. W., Manish, K. & Pandit, M. K. Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS ONE 8, e57103 (2013).

    CAS  Google Scholar 

  • 5.

    Jump, A. S., Huang, T. J. & Chou, C. H. Rapid altitudinal migration of mountain plants in Taiwan and its implications for high altitude biodiversity. Ecography 35, 204–210 (2012).

    Google Scholar 

  • 6.

    Angelo, C. L. & Daehler, C. C. Upward expansion of fire‐adapted grasses along a warming tropical elevation gradient. Ecography 36, 551–559 (2013).

    Google Scholar 

  • 7.

    Morueta-Holme, N. et al. Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc. Natl Acad. Sci. USA 112, 12741–12745 (2015).

    CAS  Google Scholar 

  • 8.

    Parolo, G. & Rossi, G. Upward migration of vascular plants following a climate warming trend in the Alps. Basic Appl. Ecol. 9, 100–107 (2008).

    Google Scholar 

  • 9.

    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    CAS  Google Scholar 

  • 10.

    Moret, P., Muriel, P., Jaramillo, R. & Dangles, O. Humboldt’s tableau physique revisited. Proc. Natl Acad. Sci. USA 116, 12889–12894 (2019).

    CAS  Google Scholar 

  • 11.

    Lenoir, J. & Svenning, J. C. Climate-related range shifts—a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).

    Google Scholar 

  • 12.

    Lenoir, J., Gegout, J. C., Marquet, P. A., de Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771 (2008).

    CAS  Google Scholar 

  • 13.

    Feeley, K. J. Distributional migrations, expansions, and contractions of tropical plant species as revealed in dated herbarium records. Glob. Change Biol. 18, 1335–1341 (2012).

    Google Scholar 

  • 14.

    Fei, S. et al. Divergence of species responses to climate change. Sci. Adv. 3, e1603055 (2017).

    Google Scholar 

  • 15.

    Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012).

    Google Scholar 

  • 16.

    Crimmins, S. M., Dobrowski, S. Z., Greenberg, J. A., Abatzoglou, J. T. & Mynsberge, A. R. Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science 331, 324–327 (2011).

    CAS  Google Scholar 

  • 17.

    Kelly, A. E. & Goulden, M. L. Rapid shifts in plant distribution with recent climate change. Proc. Natl Acad. Sci. USA 105, 11823–11826 (2008).

    CAS  Google Scholar 

  • 18.

    Wieczynski, D. J. et al. Climate shapes and shifts functional biodiversity in forests worldwide. Proc. Natl Acad. Sci. USA 116, 587–592 (2019).

    CAS  Google Scholar 

  • 19.

    Bertrand, R. et al. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479, 517–520 (2011).

    CAS  Google Scholar 

  • 20.

    Blonder, B. et al. Linking environmental filtering and disequilibrium to biogeography with a community climate framework. Ecology 96, 972–985 (2015).

    Google Scholar 

  • 21.

    Gottfried, M. et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Change 2, 111–115 (2012).

    Google Scholar 

  • 22.

    Duque, A., Stevenson, P. & Feeley, K. J. Thermophilization of adult and juvenile tree communities in the northern tropical Andes. Proc. Natl Acad. Sci. USA 112, 10744–10749 (2015).

    CAS  Google Scholar 

  • 23.

    Fadrique, B. et al. Widespread but heterogeneous responses of Andean forests to climate change. Nature 564, 207–212 (2018).

    CAS  Google Scholar 

  • 24.

    Feeley, K. J., Hurtado, J., Saatchi, S., Silman, M. R. & Clark, D. B. Compositional shifts in Costa Rican forests due to climate-driven species migrations. Glob. Change Biol. 19, 3472–3480 (2013).

    Google Scholar 

  • 25.

    Feeley, K. J. et al. Upslope migration of Andean trees. J. Biogeogr. 38, 783–791 (2011).

    Google Scholar 

  • 26.

    Esquivel‐Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25, 39–56 (2019).

    Google Scholar 

  • 27.

    Feeley, K. J. & Silman, M. R. Biotic attrition from tropical forests correcting for truncated temperature niches. Glob. Change Biol. 16, 1830–1836 (2010).

    Google Scholar 

  • 28.

    Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307 (2018).

    Google Scholar 

  • 29.

    Santiago, L. S. et al. Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New Phytol. 218, 1015–1024 (2018).

    Google Scholar 

  • 30.

    Strzepek, K., Yohe, G., Neumann, J. & Boehlert, B. Characterizing changes in drought risk for the United States from climate change. Environ. Res. Lett. 5, 044012 (2010).

    Google Scholar 

  • 31.

    Sheffield, J. & Wood, E. F. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim. Dynam. 31, 79–105 (2008).

    Google Scholar 

  • 32.

    Duffy, P. B., Brando, P., Asner, G. P. & Field, C. B. Projections of future meteorological drought and wet periods in the Amazon. Proc. Natl Acad. Sci. USA 112, 13172–13177 (2015).

    CAS  Google Scholar 

  • 33.

    Conradi, T., Van Meerbeek, K., Ordonez, A. & Svenning, J. C. Biogeographic historical legacies in the net primary productivity of Northern Hemisphere forests. Ecol. Lett. 23, 800–810 (2020).

  • 34.

    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).

    Google Scholar 

  • 35.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).

    Google Scholar 

  • 36.

    Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21, 528–549 (2015).

    Google Scholar 

  • 37.

    Dauby, G. et al. RAINBIO: a mega-database of tropical African vascular plants distributions. PhytoKeys 74, 1–18 (2016).

    Google Scholar 

  • 38.

    DeWalt, S. J., Bourdy, G., de Michel, L. R. & Quenevo, C. Ethnobotany of the Tacana: quantitative inventories of two permanent plots of Northwestern Bolivia. Econ. Bot. 53, 237–260 (1999).

    Google Scholar 

  • 39.

    Enquist, B. & Boyle, B. SALVIAS—the SALVIAS vegetation inventory database. Biodivers. Ecol. 4, 288 (2012).

    Google Scholar 

  • 40.

    Enquist, B. J., Condit, R., Peet, R. K., Schildhauer, M. & Thiers, B. M. Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity. Preprint at https://peerj.com/preprints/2615/ (2016).

  • 41.

    Fegraus, E. Tropical Ecology Assessment and Monitoring Network (TEAM Network). Biodivers. Ecol. 4, 287 (2012).

    Google Scholar 

  • 42.

    Maitner, B. S. et al. The BIEN R package: a tool to access the Botanical Information and Ecology Network (BIEN) database. Methods Ecol. Evol. 9, 373–379 (2018).

    Google Scholar 

  • 43.

    Peet, R. K. et al. Vegetation-plot database of the Carolina Vegetation Survey. Biodivers. Ecol. 4, 243–253 (2012).

    Google Scholar 

  • 44.

    Peet, R. K., Lee, M. T., Jennings, M. D. & Faber-Langendoen, D. VegBank: a permanent, open-access archive for vegetation plot data. Biodivers. Ecol. 4, 233–241 (2012).

    Google Scholar 

  • 45.

    Sosef, M. S. M. et al. Exploring the floristic diversity of tropical Africa. BMC Biol. 15, 15 (2017).

    Google Scholar 

  • 46.

    König, C. et al. Biodiversity data integration—the significance of data resolution and domain. PLoS Biol. 17, e3000183 (2019).

    Google Scholar 

  • 47.

    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

    Google Scholar 

  • 48.

    Enquist, B. J. et al. The commonness of rarity: global and future distribution of rarity across land plants. Sci. Adv. 5, eaaz0414 (2019).

    Google Scholar 

  • 49.

    Feeley, K. J., Davies, S. J., Perez, R., Hubbell, S. P. & Foster, R. B. Directional changes in the species composition of a tropical forest. Ecology 92, 871–882 (2011).

    Google Scholar 

  • 50.

    Gosselin, F. Putting floristic thermophilization in forests into a conservation biology perspective: beyond mean trait approaches. Ann. For. Sci. 73, 215–218 (2016).

    Google Scholar 

  • 51.

    De Frenne, P. et al. Microclimate moderates plant responses to macroclimate warming. Proc. Natl Acad. Sci. USA 110, 18561–18565 (2013).

    Google Scholar 

  • 52.

    Stevens, J. T., Safford, H. D., Harrison, S. & Latimer, A. M. Forest disturbance accelerates thermophilization of understory plant communities. J. Ecol. 103, 1253–1263 (2015).

    Google Scholar 

  • 53.

    Bush, M. B., Silman, M. R. & Urrego, D. H. 48,000 years of climate and forest change in a biodiversity hot spot. Science 303, 827–829 (2004).

    CAS  Google Scholar 

  • 54.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).

  • 55.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48 (2015).

    Google Scholar 

  • 56.

    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R 2 from generalized linear mixed‐effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Google Scholar 


  • Source: Ecology - nature.com

    Environmentally induced phenotypic plasticity and DNA methylation changes in a wild potato growing in two contrasting Andean experimental gardens

    Biodiversity scientists must fight the creeping rise of extinction denial