in

Climate reverses directionality in the richness–abundance relationship across the World’s main forest biomes

  • 1.

    Wright, A. J., Wardle, D. A., Callaway, R. & Gaxiola, A. The overlooked role of facilitation in biodiversity experiments. Trends Ecol. Evol. 32, 383–390 (2017).

    Article  PubMed  Google Scholar 

  • 2.

    Pacala, S. W. & Levin, S. A. Biologically generated spatial pattern and the coexistence of competing species. In Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions (Eds Tilman, D. and Kareiva, P.) (Princeton University Press, Princeton, NJ, 1997).

  • 3.

    Liang, J. et al. Positive biodiversity–productivity relationship predominant in global forests. Science 354, aaf8957 (2016).

  • 4.

    Poorter, L. et al. Biodiversity and climate determine the functioning of Neotropical forests. Glob. Ecol. Biogeogr. 26, 1423–1434 (2017).

    Article  Google Scholar 

  • 5.

    Ratcliffe, S. et al. Modes of functional biodiversity control on tree productivity across the European continent. Glob. Ecol. Biogeogr. 25, 251–262 (2016).

    Article  Google Scholar 

  • 6.

    Scherer-Lorenzen, M. & Schulze, E. D. Forest Diversity and Function: Temperate and Boreal Systems, Vol. 176 (Springer Science & Business Media, 2005).

  • 7.

    Paquette, A. & Messier, C. The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob. Ecol. Biogeogr. 20, 170–180 (2011).

    Article  Google Scholar 

  • 8.

    Liu, X. et al. Tree species richness increases ecosystem carbon storage in subtropical forests. Proc. R. Soc. B. 285, 20181240 (2018).

    Article  PubMed  Google Scholar 

  • 9.

    Holzwarth, F., Rüger, N. & Wirth, C. Taking a closer look: disentangling effects of functional diversity on ecosystem functions with a trait-based model across hierarchy and time. R. Soc. Open Sci. 2, 140541 (2015).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 10.

    Bongers, F. J. et al. Growth–trait relationships in subtropical forest are stronger at higher diversity. J. Ecol. 108, 256–266 (2020).

    Article  Google Scholar 

  • 11.

    Adair, E. C., Hooper, D. U., Paquette, A. & Hungate, B. A. Ecosystem context illuminates conflicting roles of plant diversity in carbon storage. Ecol. Lett. 21, 1604–1619 (2018).

    Article  Google Scholar 

  • 12.

    Aponte, C. et al. Structural diversity underpins carbon storage in Australian temperate forests. Glob. Ecol. Biogeogr. 29, 789–802 (2020).

    Article  Google Scholar 

  • 13.

    Waide, R. B. et al. The relationship between productivity and species richness. Annu. Rev. Ecol. Evol. Syst. 30, 257–300 (1999).

    Article  Google Scholar 

  • 14.

    Dormann, C. F., Schneider, H. & Gorges, J. Neither global nor consistent: a technical comment on the tree diversity-productivity analysis of Liang et al. (2016). BioRxiv, 524363 (2019).

  • 15.

    Srivastava, D. S. & Lawton, J. H. Why more productive sites have more species: an experimental test of theory using tree-hole communities. Am. Nat. 152, 510–529 (1998).

    CAS  Article  PubMed  Google Scholar 

  • 16.

    Gaston, K. J. Global patterns in biodiversity. Nature 405, 220 (2000).

    CAS  Article  PubMed  Google Scholar 

  • 17.

    McGlynn, T. P., Weiser, M. D. & Dunn, R. R. More individuals but fewer species: testing the ‘more individuals hypothesis’ in a diverse tropical fauna. Biol. Lett. 6, 490–493 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • 18.

    Yee, D. A. & Juliano, S. A. Abundance matters: a field experiment testing the more individuals hypothesis for richness–productivity relationships. Oecologia 153, 153–162 (2007).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 19.

    Storch, D., Bohdalková, E. & Okie, J. The more‐individuals hypothesis revisited: the role of community abundance in species richness regulation and the productivity–diversity relationship. Ecol. Lett. 21, 920–937 (2018).

    Article  Google Scholar 

  • 20.

    Ratcliffe, S. et al. Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecol. Lett. 20, 1414–1426 (2017).

    Article  PubMed  Google Scholar 

  • 21.

    Zhai, P., Pörtner, H. O., & Roberts, D. (Eds). Summary for policymakers. In: global warming of 1.5 °C. An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways. The Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, 32 (2018).

  • 22.

    Shipley, B. Testing causal explanations in organismal biology: causation, correlation and structural equation modelling. Oikos 86, 374–382 (1999).

    Article  Google Scholar 

  • 23.

    Yoda, K., Kira, T., Ogawa, H. & Hozami, K. Self-thinning in overcrowded pure stands under cultivated and natural conditions. J. Biol. Osaka City Univ. 14, 107–129 (1963).

    Google Scholar 

  • 24.

    Westoby, M. The self-thinning rule. Adv. Ecol. Res. 14, 167–225 (1984).

    Article  Google Scholar 

  • 25.

    Jump, A. S. et al. Structural overshoot of tree growth with climate variability and the global spectrum of drought‐induced forest dieback. Glob. Change Biol. 23, 3742–3757 (2017).

    ADS  Article  Google Scholar 

  • 26.

    Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Article  Google Scholar 

  • 27.

    Schluter, D. Experimental evidence that competition promotes divergence in adaptive radiation. Science 266, 798–801 (1994).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 28.

    Francis, A. P. & Currie, D. J. A globally consistent richness–climate relationship for angiosperms. Am. Nat. 161, 523–536 (2003).

    Article  PubMed  Google Scholar 

  • 29.

    Grossiord, C. et al. Tree diversity does not always improve resistance of forest ecosystems to drought. Proc. Natl Acad. Sci. USA 111, 14812–14815 (2014).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 30.

    Lavergne, S., Mouquet, N., Thuiller, W. & Ronce, O. Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annu. Rev. Ecol. Evol. Syst. 41, 321–350 (2010).

    Article  Google Scholar 

  • 31.

    Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M. & Roy, K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40, 245–269 (2009).

    Article  Google Scholar 

  • 32.

    Meehl, G. A. et al. Global climate projections. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) (Cambridge University Press, Cambridge, United Kingdom and New York, NY, 2007).

  • 33.

    Lieth, H. Modelling the Primary Productivity of the Earth. Nature and Resources. UNESCO, VIII, 2:5-10 (1972).

  • 34.

    Lieth, H. Modeling the primary productivity of the world. In Primary Productivity of the Biosphere (eds Lieth, H. & Whittaker, R. H.) 237–264 (Springer-Verlag, New York, NY, 1975).

  • 35.

    Grieser, J., Gommes, R., Cofield, S. & Bernardi, M. In World Maps of Climatological Net Primary Production of Biomass, NPP (Food and Agriculture Organization of the United Nations, GEONETWORK, FAO, Rome, 2006).

  • 36.

    Revadekar, J. V. et al. Impact of altitude and latitude on changes in temperature extremes over South Asia during 1971–2000. Int. J. Climatol. 33, 199–209 (2013).

    Article  Google Scholar 

  • 37.

    Ali, S. et al. Effect of altitude on forest soil properties at Northern Karakoram. Eurasia. Soil Sci. 52, 1159–1169 (2019).

    ADS  Article  Google Scholar 

  • 38.

    Zhu, Z. X., Nizamani, M. M., Sahu, S. K., Kunasingam, A. & Wang, H. F. Tree abundance, richness, and phylogenetic diversity along an elevation gradient in the tropical forest of Diaoluo Mountain in Hainan, China. Acta Oecol. 101, 103481 (2019).

    Article  Google Scholar 

  • 39.

    Malizia, A. et al. Elevation and latitude drives structure and tree species composition in Andean forests: results from a large-scale plot network. PLoS ONE 15, e0231553 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 40.

    Homeier, J., Breckle, S. W., Günter, S., Rollenbeck, R. T. & Leuschner, C. Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species‐rich Ecuadorian montane rain forest. Biotropica 42, 140–148 (2010).

    Article  Google Scholar 

  • 41.

    Benavides, R. et al. Recruitment patterns of four tree species along elevation gradients in Mediterranean mountains: not only climate matters. For. Ecol. Manag. 360, 287–296 (2016).

    Article  Google Scholar 

  • 42.

    R Core Team R. A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2013).

  • 43.

    Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. R Core Team nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-148. https://CRAN (2020).


  • Source: Ecology - nature.com

    Ecological traits, genetic diversity and regional distribution of the macroalga Treptacantha elegans along the Catalan coast (NW Mediterranean Sea)

    Pushing the envelope with fusion magnets