in

Climate stability and societal decline on the margins of the Byzantine empire in the Negev Desert

  • 1.

    Rosen, S. A. Basic Instabilities? Climate and Culture in the Negev over the Long Term. 32, 6–22 (2016).

    • Google Scholar
  • 2.

    Finkelstein, I. Living on the fringe: the archaeology and history of the Negev, Sinai and neighbouring regions in the Bronze and Iron Ages. (Sheffield Academic Press, 1995).

  • 3.

    Evenari, M., Shannan, L. & Tadmor, N. The Negev: The Challenge of the Desert. (Harvard University Press, 1982).

  • 4.

    Horowitz, A. The Quaternary of Israel. (Academic Press, 1979).

  • 5.

    Rosen, A. M. & Rosen, S. Environmental change and society in Holocene prehistory. Quat. Levant Environ. Clim. Chang. Humans 761–766 (2017).

  • 6.

    Avni, Y., Avni, G. & Porat, N. A review of the rise and fall of ancient desert runoff agriculture in the Negev Highlands – A model for the southern Levant deserts. J. Arid Environ. 163, 127–137 (2019).

  • 7.

    McCormick, M., Cook, E. R., Manning, S. W. & More, A. F. M. Climate Change during and after the Roman Empire: Reconstructing the Past from Scientific and Historical Evidence. J. Interdiscip. Hist. 43, 169–220 (2012).

    • Article
    • Google Scholar
  • 8.

    Haldon, J. et al. History meets palaeoscience: Consilience and collaboration in studying past societal responses to environmental change. Proc. Natl. Acad. Sci. Perspect. 115, 3210–3218 (2018).

  • 9.

    Avni, G. The Byzantine-Islamic Transition in Palestine: An Archaeological Approach. (Oxford University Press, 2014).

  • 10.

    Erickson-Gini, T. Nabataean settlement and self-organized economy in The Central Negev: crisis and renewal. (Archaeopress, 2010).

  • 11.

    Rosen, S. A. & Avni, G. The Edge of the Empire: The Archaeology of Pastoral Nomads in the Southern Negev Highlands in Late Antiquity. Biblic. Archaeol. 56, 189–199 (1993).

    • Article
    • Google Scholar
  • 12.

    Tepper, Y., Erickson-Gini, T. & Farhi, Y. Probing the Byzantine/Early Islamic Transition in the Negev: The Renewed Shivta Excavations, 2015–2016. Tel Aviv J. Inst. Archaeol. Tel Aviv Univ. 45, 120–152 (2018).

    • Google Scholar
  • 13.

    Marom, N. et al. Zooarchaeology of the social and economic upheavals in the Late Antique-Early Islamic sequence of the Negev Desert. Sci. Rep. 9, 6702 (2019).

  • 14.

    Avni, Y., Porat, N. & Avni, G. Pre-farming environment and OSL chronology in the Negev Highlands, Israel. J. Arid Environ. 86, 12–27 (2012).

  • 15.

    Bruins, H. J., Bithan-Guedj, H. & Svoray, T. GIS-based hydrological modelling to assess runoff yields in ancient-agricultural terraced wadi fields (central Negev desert). J. Arid Environ. 166, 91–107 (2019).

  • 16.

    Horowitz, A. Pollen spectra from two early Holocene prehistoric sites in the Har Harif (West Central Negev). Prehistory Paleoenviron. Cent. Negev. Isr. 2, 323–326 (1977).

    • Google Scholar
  • 17.

    Goodfriend, G. A. Rainfall in the Negev Desert during the Middle Holocene, based on 13C Organic Matter in Land Snail Shells. Quat. Res. 34, 186–197 (1990).

    • Article
    • Google Scholar
  • 18.

    Enzel, Y. et al. Late Holocene climates of the Near East deduced from Dead Sea level variations and modern regional winter rainfall. Quat. Res. 60, 263–273 (2003).

    • Article
    • Google Scholar
  • 19.

    Amit, R., Enzel, Y. & Sharon, D. Permanent Quaternary aridity in the southern Negev, Israel. Geology 34, 509–512 (2006).

  • 20.

    Bar-Matthews, M., Ayalon, A. & Kaufman, A. Late Quaternary Paleoclimate in the Eastern Mediterranean Region from Stable Isotope Analysis of Spelethems at Soreq Cave, Israel. Quat. Res. 168, 155–168 (1997).

    • Article
    • Google Scholar
  • 21.

    Bar-Matthews, M. et al. Sea – land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochim. Cosmochim. Acta 67, 3181–3199 (2003).

  • 22.

    Almogi-Labin, A. et al. Climatic variability during the last ~90 ka of the southern and northern Levantine Basin as evident from marine records and speleothems. Quat. Sci. Rev. 28, 2882–2896 (2009).

  • 23.

    Orland, I. J. et al. Climate deterioration in the Eastern Mediterranean as revealed by ion microprobe analysis of a speleothem that grew from 2.2 to 0.9 ka in Soreq Cave, Israel. Quat. Res. 71, 27–35 (2009).

    • Article
    • Google Scholar
  • 24.

    Bookman, R., Enzel, Y., Agnon, A. & Stein, M. Late Holocene lake levels of the dead sea. Bull. Geol. Soc. Am. 116, 555–571 (2004).

    • Article
    • Google Scholar
  • 25.

    Bar-Oz, G. et al. Ancient trash mounds unravel urban collapse a century before the end of Byzantine hegemony in the southern Levant. Proc. Natl. Acad. Sci. 116, 8239–8248 (2019).

  • 26.

    Little, L. K. Plague and the End of Antiquity: The Pandemic of 541–750. (Cambridge University Press, 2007).

  • 27.

    Ramsay, J. & Tepper, Y. Signs from a green desert: A preliminary examination of the archaeobotanical remains from a Byzantine dovecote near Shivta. Israel. Veg. Hist. Archaeobot. 19, 235–242 (2010).

    • Article
    • Google Scholar
  • 28.

    Ramsay, J. et al. For the birds–An environmental archaeological analysis of Byzantine pigeon towers at Shivta (Negev Desert, Israel). J. Archaeol. Sci. Reports 9, 718–727 (2016).

    • Article
    • Google Scholar
  • 29.

    Fried, T., Weissbrod, L., Tepper, Y. & Bar-Oz, G. A glimpse of an ancient agricultural ecosystem based on remains of micromammals in the Byzantine Negev Desert. R. Soc. Open Sci. 5, 171528 (2018).

  • 30.

    Bogaard, A., Heaton, T. H. E., Poulton, P. & Merbach, I. The impact of manuring on nitrogen isotope ratios in cereals: archaeological implications for reconstruction of diet and crop management practices. J. Archaeol. Sci. 34, 335–343 (2007).

    • Article
    • Google Scholar
  • 31.

    Fraser, R. et al. Manuring and stable nitrogen isotope ratios in cereals and pulses: towards a new archaeobotanical approach to the inference of land use and dietary practices. J. Archaeol. Sci. 38, 2790–2804 (2011).

    • Article
    • Google Scholar
  • 32.

    Bailey, C. & Danin, A. Bedouin Plant Utilization in Sinai and the Negev. Econ. Bot. 35, 145–162 (1981).

    • Article
    • Google Scholar
  • 33.

    Perevolotsky, A., Perevolotsky, A. & Noy-Meir, I. Environmental Adaptation and Economic Change in a Pastoral Mountain Society: The Case of the Jabaliyah Bedouin of the Mt. Sinai Region. Mt. Res. Dev. 9, 153–164 (1989).

    • Article
    • Google Scholar
  • 34.

    Bryant, J. D., Froelich, P. N., Showers, W. J. & Genna, B. J. Biologic and climatic signals in the oxygen isotopic composition of Eocene-Oligocene equid enamel phosphate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 126, 75–89 (1996).

    • Article
    • Google Scholar
  • 35.

    Britton, K., Grimes, V., Dau, J. & Richards, M. P. Reconstructing faunal migrations using intra-tooth sampling and strontium and oxygen isotope analyses: a case study of modern caribou (Rangifer tarandus granti). J. Archaeol. Sci. 36, 1163–1172 (2009).

    • Article
    • Google Scholar
  • 36.

    Bowen, G. J. & Wilkinson, B. Spatial distribution of δ18O in meteoric precipitation. Geology 30, 315–318 (2002).

  • 37.

    Longinelli, A. Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleoclimatological research? Geochim. Cosmochim. Acta 48, 385–390 (1984).

  • 38.

    Gat, J. R. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Rev. Earth Planet. Sci. 24, 225–262 (1996).

  • 39.

    Hillson, S. T. (Cambridge University Press, 2005).

  • 40.

    Fricke, H. C. & O’Neil, J. R. Inter- and intra-tooth variation in the oxygen isotope composition of mammalian tooth enamel phosphate: implications for palaeoclimatological and plaeobiological research. Palaeogeogr. Palaeoclimatol. Palaeoecol. 126, 91–99 (1996).

    • Article
    • Google Scholar
  • 41.

    Gat, J. R. The isotopes of hydrogen and oxygen in precipiation. In Handbook of Environmental Isotope Geochemistry (eds. Fritz, P. & Fontes, J. C.) 21–42 (Elsevier, 1980).

  • 42.

    Rozanski, K., Araguás-Araguás, L. & Gonfiantini, R. Isotopic patterns in modern global precipitation. In Climate Change in Continental Isotopic Records (eds. Swart, P. K., Lohmann, K. C., McKenzie, J. & Savin, S.) 1–36 (American Geophysical Union, 1993).

  • 43.

    Gat, J. R. & Dansgaard, W. Stable Isotope Survey of the Fresh Water Occurrences in Israel and the Northern Jordan Rift Valley. J. Hydrol. 177–212 (1972).

  • 44.

    Cerling, T. E. et al. Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–158 (1997).

  • 45.

    Vogel, J. C. & van der Merwe, N. J. Isotopic Evidence for Early Maize Cultivation in New York State. Am. Antiq. 42, 238–242 (1977).

  • 46.

    Hartman, G. & Danin, A. Isotopic values of plants in relation to water availability in the Eastern Mediterranean region. Oecologia 162, 837–52 (2010).

  • 47.

    Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. Carbon Isotope Discrimination and Photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 503–437 (1989).

  • 48.

    Farquhar, G. D., O’Leary, M. H. & Berry, J. A. On the Relationship between Carbon Isotope Discrimination and the Intercellular Carbon Dioxide Concentration in Leaves. Aust. J. Plant Physiol. 9, 121–137 (1982).

    • CAS
    • Google Scholar
  • 49.

    Reid, R. E. B., Lalk, E., Marshall, F. & Liu, X. Carbon and nitrogen isotope variability in the seeds of two African millet species: Pennisetum glaucum and Eleusine coracana. Rapid Commun. Mass Spectrom. 32, 1693–1702 (2018).

  • 50.

    Le Houerou, H. H. Diffuse vs. contracted vegetation patterns: An objective demarcation between arid and desert vegetations. Isr. J. Plant Sci. 53, 177–182 (2005).

    • Article
    • Google Scholar
  • 51.

    Russow, R., Veste, M. & Böhme, F. A natural 15N approach to determine the biological fixation of atmospheric nitrogen by biological soil crusts of the Negev Desert. Rapid Commun. Mass Spectrom. 19, 3451–3456 (2005).

  • 52.

    Heaton, T. H. E. The 15N/14N ratios of plants in South Africa and Namibia: relationship to climate and coastal/saline environments. Oecologia 74, 236–246 (1987).

  • 53.

    Silanikove, N. The physiological basis of adaptation in goats to harsh environments. Small Rumin. Res. 35, 181–193 (2000).

    • Article
    • Google Scholar
  • 54.

    Makarewicz, C. A. Winter pasturing practices and variable fodder provisioning detected in nitrogen (δ15N) and carbon (δ13C) isotopes in sheep dentinal collagen. J. Archaeol. Sci. 41, 502–510 (2014).

    • Article
    • Google Scholar
  • 55.

    Hartman, G., Hovers, E., Hublin, J.-J. & Richards, M. Isotopic evidence for Last Glacial climatic impacts on Neanderthal gazelle hunting territories at Amud Cave, Israel. J. Hum. Evol. 84, 71–82 (2015).

  • 56.

    Hallin, K. A., Schoeninger, M. J. & Schwarcz, H. P. Paleoclimate during Neandertal and anatomically modern human occupation at Amud and Qafzeh, Israel: the stable isotope data. J. Hum. Evol. 62, 59–73 (2012).

  • 57.

    Marx, E. Bedouins of the Negev. (Manchester University Press, 1967).

  • 58.

    Hartman, G. Are elevated δ15N values in herbivores in hot and arid environments caused by diet or animal physiology? Funct. Ecol. 25, 122–131 (2011).

    • Article
    • Google Scholar
  • 59.

    Ambrose, S. H. Effects of diet, climate and physiology on nitrogen isotope abundances in terrestrial foodwebs. J. Archaeol. Sci. 18, 293–317 (1991).

    • Article
    • Google Scholar
  • 60.

    Amundson, R. et al. Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochem. Cycles 17, 1–10 (2003).

  • 61.

    Murphy, B. P. & Bowman, D. M. J. S. Kangaroo metabolism does not cause the relationship between bone collagen δ15N and water availability. Funct. Ecol. 20, 1062–1069 (2006).

    • Article
    • Google Scholar
  • 62.

    Hedges, R. E. M. & Reynard, L. M. Nitrogen isotopes and the trophic level of humans in archaeology. J. Archaeol. Sci. 34, 1240–1251 (2007).

    • Article
    • Google Scholar
  • 63.

    Dunseth, Z. C. et al. Archaeobotanical proxies and archaeological interpretation: A comparative study of phytoliths, pollen and seeds in dung pellets and refuse deposits at Early Islamic Shivta, Negev, Israel. Quat. Sci. Rev. 211, 166–185 (2019).

  • 64.

    Goren-Inbar, N. Ethnoarchaeology: The Southern Sinai Bedouin as a Case Study. in Biblical Archaeology Today, 1990: Proceedings from the Second International Congress on Biblical Archaeology 417–419 (1990).

  • 65.

    Eloul, R. Culture Change in a Bedouin Tribe: The ‘arab al-Ḥğerāt, Lower Galilee, A.D. 1790–1977. In Anthropological Papers of the Museum of Anthropology 97 (University of Michigan Press, 2010).

  • 66.

    Barth, F. Nomads of South Persia. (Little Brown, 1961).

  • 67.

    Rosen, S. A. Revolutions in the Desert: The Rise of Mobile Pastoralism in the Negev and the Arid Zones of the Southern Levant. (Routledge, 2016).

  • 68.

    Nevo, Y. D. Pagans and herders: a re-examination of the Negev runoff cultivation systems in the Byzantine and Early Arab periods. 1, (IPS Limited, 1991).

  • 69.

    Mayerson, P. The Saracens and the Limes. Bull. Am. Sch. Orient. Res. 262, 35–47 (1986).

    • Article
    • Google Scholar
  • 70.

    Halstead, P. Two Oxen Ahead: Pre-Mechanized Farming in the Mediterranean. (John Wiley & Sons, 2014).

  • 71.

    Marom, N., Rosen, B., Tepper, Y. & Bar-oz, G. Pigeons at the edge of the empire: Bioarchaeological evidences for extensive management of pigeons in a Byzantine desert settlement in the southern Levant. PLoS One 13, e0193206 (2018).

  • 72.

    Tepper, Y. et al. Pigeon-raising and sustainable agriculture at the fringe of the desert: a view from the Byzantine village of Sa’adon, Negev, Israel. Levant 50, 91–113 (2018).

    • Article
    • Google Scholar
  • 73.

    Büntgen, U. et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nat. Geosci. 9, 231–236 (2016).

  • 74.

    Buckley, M., Collins, M., Thomas-Oates, J. & Wilson, J. C. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun. mass Spectrom. 23, 3843–3854 (2009).

  • 75.

    Buckley, M. et al. Distinguishing between archaeological sheep and goat bones using a single collagen peptide. J. Archaeol. Sci. 37, 13–20 (2010).

    • Article
    • Google Scholar
  • 76.

    Balasse, M. Reconstructing dietary and environmental history from enamel isotopic analysis: time resolution of intra-tooth sequential sampling. Int. J. Osteoarchaeol. 12, 155–165 (2002).

    • Article
    • Google Scholar
  • 77.

    Balasse, M., Ambrose, S. H., Smith, A. B. & Price, T. D. The Seasonal Mobility Model for Prehistoric Herders in the South-western Cape of South Africa Assessed by Isotopic Analysis of Sheep Tooth Enamel. J. Archaeol. Sci. 29, 917–932 (2002).

    • Article
    • Google Scholar
  • 78.

    Szpak, P., Metcalfe, J. Z. & Macdonald, R. A. Best practices for calibrating and reporting stable isotope measurements in archaeology. J. Archaeol. Sci. Reports 13, 609–616 (2017).

    • Article
    • Google Scholar
  • 79.

    Richards, M. P. & Hedges, R. E. M. Stable Isotope Evidence for Similarities in the Types of Marine Foods Used by Late Mesolithic Humans at Sites Along the Atlantic Coast of Europe. J. Archaeol. Sci. 26, 717–722 (1999).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Powering the planet

    What is the future of lighting waste?