in

Climatic oscillations in Quaternary have shaped the co-evolutionary patterns between the Norway spruce and its host-associated herbivore

  • 1.

    Klicka, J. & Zink, R. M. Pleistocene effects on North American songbird evolution. Proc. R. Soc. B Biol. Sci. 266, 695–700 (1999).

    Article  Google Scholar 

  • 2.

    Johnson, N. K. & Cicero, C. New mitochondrial DNA data affirm the importance of pleistocene speciation in North American birds. Evolution 58, 1122–1130 (2004).

    PubMed  Article  Google Scholar 

  • 3.

    Avise, J. C. & Walker, D. Pleistocene phylogeographic effects on avian populations and the speciation process. Proc. R. Soc. B Biol. Sci. 265, 457–463 (1998).

    CAS  Article  Google Scholar 

  • 4.

    April, J., Hanner, R. H., Dion-Côté, A.-M. & Bernatchez, L. Glacial cycles as an allopatric speciation pump in north-eastern American freshwater fishes. Mol. Ecol. 22, 409–422 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 5.

    Ribera, I. & Vogler, A. P. Speciation of Iberian diving beetles in Pleistocene refugia (Coleoptera, Dytiscidae). Mol. Ecol. 13, 179–193 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 6.

    Hewitt, G. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58, 247–276 (1996).

    Article  Google Scholar 

  • 7.

    Hewitt, G. M. Genetic consequences of climatic oscillations in the Quaternary. . Philos. Trans. R. Soc. Lond., B Biol. Sci. 359, 183–195 (2004).

    CAS  Article  Google Scholar 

  • 8.

    Hewitt, G. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68, 87–112 (1999).

    Article  Google Scholar 

  • 9.

    Skrzecz, I. & Bulka, M. Insect assemblages in Norway spruce (Picea abies (L.) Karst.) stumps in the Eastern Sudetes. Folia For. Pol. Ser. A. 52, 98–107 (2010).

    Google Scholar 

  • 10.

    Röder, J. et al. Arthropod species richness in the Norway Spruce (Picea abies (L.) Karst.) canopy along an elevation gradient. For. Ecol. Manage. 259, 1513–1521 (2010).

    Article  Google Scholar 

  • 11.

    Tollefsrud, M. M. et al. Genetic consequences of glacial survival and postglacial colonization in Norway spruce: combined analysis of mitochondrial DNA and fossil pollen. Mol. Ecol. 17, 4134–4150 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 12.

    Latałowa, M. & van der Knaap, W. O. Late quaternary expansion of Norway spruce Picea abies (L.) Karst. in Europe according to pollen data. Quat. Sci. Rev. 25, 2780–2805 (2006).

    ADS  Article  Google Scholar 

  • 13.

    Gałka, M. & Tobolski, K. Macrofossil evidence of early Holocene presence of Picea abies (Norway spruce) in NE Poland. Ann. Bot. Fenn. 3847, 129–141 (2013).

    Article  Google Scholar 

  • 14.

    Dering, M. & Lewandowski, A. Finding the meeting zone: Where have the northern and southern ranges of Norway spruce overlapped?. For. Ecol. Manage. 259, 229–235 (2009).

    Article  Google Scholar 

  • 15.

    Giesecke, T. & Bennett, K. D. The Holocene spread of Picea abies (L.) Karst. in Fennoscandia and adjacent areas. J. Biogeogr. 31, 1523–1548 (2004).

    Article  Google Scholar 

  • 16.

    Taberlet, P., Fumagalli, L., Wust-Saucy, A. G. & Cosson, J. F. Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 7, 453–464 (1998).

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Zając, A. & Zając, M. Atlas rozmieszczenia roślin naczyniowych w Polsce. (ed. Zając, A. & Zając, M) (Pracownia Chorologii Komputerowej Instytutu Botaniki Uniwersytetu Jagiellońskiego, 2001).

  • 18.

    Sallé, A., Arthofer, W., Lieutier, F., Stauffer, C. & Kerdelhué, C. Phylogeography of a host-specific insect: Genetic structure of Ips typographus in Europe does not reflect past fragmentation of its host. Biol. J. Linn. Soc. 90, 239–246 (2007).

    Article  Google Scholar 

  • 19.

    Stauffer, C., Lakatos, F. & Hewitt, G. M. Phylogeography and postglacial colonization routes of Ips typographus L. (Coleoptera, Scolytidae). Mol. Ecol. 8, 763–773 (1999).

    Article  Google Scholar 

  • 20.

    Bertheau, C. et al. Divergent evolutionary histories of two sympatric spruce bark beetle species. Mol. Ecol. 22, 3318–3332 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 21.

    Mayer, F. et al. Comparative multilocus phylogeography of two Palaearctic spruce bark beetles: influence of contrasting ecological strategies on genetic variation. Mol. Ecol. 24, 1292–1310 (2015).

    PubMed  Article  Google Scholar 

  • 22.

    Schebeck, M. et al. Pleistocene climate cycling and host plant association shaped the demographic history of the bark beetle Pityogenes chalcographus. Sci. Rep. 8, 14207 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 23.

    Forsse, E. & Solbreck, C. Migration in the bark beetle Ips typographus L: duration, timing and height of flight. Zeitschrift für Angewandte Entomologie 100, 47–57 (1985).

    Article  Google Scholar 

  • 24.

    Putz, J., Vorwagner, E. M. & Hoch, G. Flight performance of Monochamus sartor and Monochamus sutor, potential vectors of the pine wood nematode. For. J. 62, 195–201 (2016).

    Google Scholar 

  • 25.

    Kawai, M. et al. Genetic Structure of Pine Sawyer Monochamus alternatus (Coleoptera: Cerambycidae) Populations in Northeast Asia: Consequences of the Spread of Pine Wilt Disease. Environ. Entomol. 35, 569–579 (2006).

    Article  Google Scholar 

  • 26.

    Shoda-Kagaya, E. Genetic differentiation of the pine wilt disease vector Monochamus alternatus (Coleoptera: Cerambycidae) over a mountain range – revealed from microsatellite DNA markers. Bull. Entomol. Res. 97, 167–174 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Haran, J., Rousselet, J., Tellez, D., Roques, A. & Roux, G. Phylogeography of Monochamus galloprovincialis, the European vector of the pinewood nematode. J. Pest Sci. 2004(91), 247–257 (2018).

    Article  Google Scholar 

  • 28.

    Koutroumpa, F. A., Rougon, D., Bertheau, C., Lieutier, F. & Roux-Morabito, G. Evolutionary relationships within European Monochamus (Coleoptera: Cerambycidae) highlight the role of altitude in species delineation. Biol. J. Linn. Soc. 109, 354–376 (2013).

    Article  Google Scholar 

  • 29.

    Plewa, R. et al. Morphology, genetics and Wolbachia endosymbionts support distinctiveness of Monochamus sartor sartor and M. s. urussovii (Coleoptera: Cerambycidae). Arthropod Syst. Phylogeny 76, 123–135 (2018).

    Google Scholar 

  • 30.

    Ballard, J. W. O. & Whitlock, M. C. The incomplete natural history of mitochondria. Mol. Ecol. 13, 729–744 (2004).

    PubMed  Article  Google Scholar 

  • 31.

    Toews, D. P. L. & Brelsford, A. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 21, 3907–3930 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 32.

    Bazin, E. Population size does not influence mitochondrial genetic diversity in animals. Science 312, 570–572 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 33.

    Plavil’shhikov, N. Zhuki-drovoseki, chast’3. Podsemejstvo Lamiinae, ch. 1. (ed. Plavil’shhikov, N.) 510–514 (Fauna SSSR. Zhestkokrylye, 1958).

  • 34.

    Sama, G. Atlas of the Cerambycidae of Europe and the Mediterranean Area (ed. Sama, G.) 98–99 (Vit Kabourek, 2002).

  • 35.

    Sama, G. & Löbl, L. Cerambycidae, Western Palaearctic taxa.In:Catalogue of Palaearctic Coleoptera. Volume 6. Chrysomeloidea (ed. Löbl, I. & Smetana, A.) 281–283 (Apollo Books, 2010).

  • 36.

    Wallin, H., Schroeder, M. & Kvamme, T. A review of the European species of Monochamus Dejean, 1821 (Coleoptera, Cerambycidae) -with a description of the genitalia characters. Nor. J. Entomol. 60, 11–38 (2013).

    Google Scholar 

  • 37.

    Rossa, R., Goczał, J. & Tofilski, A. Within and between-species variation of wing venation in genus Monochamus (Coleoptera: Cerambycidae). J. Insect Sci. 16, 5 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Ravazzi, C. Late quaternary history of spruce in southern Europe. Rev. Palaeobot. Palynol. 120, 131–177 (2002).

    Article  Google Scholar 

  • 39.

    Terhürne-Berson, R. Changing distribution patterns of selected conifers in the Quaternary of Europe caused by climatic variations.https://d-nb.info/975944576/34 (2005).

  • 40.

    Ralska-Jasiewiczowa, M Latałowa, M. et al. Late Glacial and Holocene history of vegetation in Poland based on isopollen maps(ed. Ralska-Jasiewiczowa, M Latałowa, M. et al.) 147–159 (W. Szafer Institute of Botany, Polish Academy of Sciences, 2004).

  • 41.

    Adams, D. C., Rohlf, F. J. & Slice, D. E. Geometric morphometrics: ten years of progress following the ‘revolution’. Ital. J. Zool. 71, 5–16 (2004).

    Article  Google Scholar 

  • 42.

    Zelditch, M. L., Swiderski, D. L., Sheets, H. D. & Fink, W. L. Geometric Morphometrics for Biologist. A Primer(ed. Zelditch, M. L., Swiderski, D. L., Sheets, H. D. & Fink, W. L.). 263–490 (2004).

  • 43.

    Oleksa, A. & Tofilski, A. Wing geometric morphometrics and microsatellite analysis provide similar discrimination of honey bee subspecies. Apidologie 46, 49–60 (2015).

    Article  Google Scholar 

  • 44.

    Hurtado-Burillo, M. et al. A geometric morphometric and microsatellite analyses of Scaptotrigona mexicana and S. pectoralis (Apidae: Meliponini) sheds light on the biodiversity of Mesoamerican stingless bees. J. Insect Conserv. 5, 753–763 (2016).

    Article  Google Scholar 

  • 45.

    Haack, R. A. Exotic bark- and wood-boring Coleoptera in the United States: recent establishments and interceptions. Can. J. For. Res. 36, 269–288 (2006).

    Article  Google Scholar 

  • 46.

    Shoda, E., Kubota, K. & Makihara, H. Geographical structuring of mitochondrial DNA in Semanotus japonicus (Coleoptera: Cerambycidae). Appl. Entomol. Zool. 38, 339–345 (2003).

    CAS  Article  Google Scholar 

  • 47.

    Shoda, E., Kubota, K. & Makihara, H. Geographical structure of morphological characters in Semanotus japonicus (Coleoptera: Cerambycidae) in Japan. Appl. Entomol. Zool. 38, 369–377 (2003).

    Article  Google Scholar 

  • 48.

    Rossa, R., Goczał, J., Pawliczek, B. & Ohbayashi, N. Hind wing variation in Leptura annularis complex among European and Asiatic populations (Coleoptera, Cerambycidae). Zookeys 724, 31–42 (2017).

    Article  Google Scholar 

  • 49.

    Kolk, A. & Starzyk, J. Atlas szkodliwych owadów lesnych (The atlas of harmful forest insects). 268–488 (Multico,1996).

  • 50.

    Cherepanov, A. Usachi Severnoj Azii (Lamiinae) (ed. Cherepanov, A.) 97–102 (Nauka Publishers, 1983).

  • 51.

    Danilevsky, M. L. A check list of the longicorn beetles (Cerambycoidea) of Russia.https://www.zin.ru/Animalia/Coleoptera/doc/List_of_Russia.doc (2015).

  • 52.

    Haran, J. & Roux-Morabito, G. Development of 12 microsatellites loci for the longhorn beetle Monochamus galloprovincialis (Coleoptera Cerambycidae), vector of the Pine Wood Nematode in Europe. Conserv. Genet. Res. 6, 975–977 (2014).

    Article  Google Scholar 

  • 53.

    Chybicki, I. J. & Burczyk, J. Simultaneous estimation of null alleles and inbreeding coefficients. J. Hered. 100, 106–113 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 54.

    Guo, S. W. & Thompson, E. A. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 1, 361–372 (1992).

    MATH  Article  Google Scholar 

  • 55.

    Paradis, E. Pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics 26, 419–420 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 56.

    Agapow, P. M. & Burt, A. Indices of multilocus linkage disequilibrium. Mol. Ecol. Notes 1, 101–102 (2001).

    CAS  Article  Google Scholar 

  • 57.

    Kamvar, Z. N., Tabima, J. F. & Gr̈unwald, N. J. Poppr, ,. An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ e281, 1–14 (2014).

    Google Scholar 

  • 58.

    Storey, J. D., Bass, A. J., Dabney, A. & Robinson, D. qvalue: Q-value estimation for false discovery rate control. R package version 2.14.1. https://qvalue.princeton.edu (2019).

  • 59.

    Goudet, J. & Jombart, T. hierfstat: estimation and tests of hierarchical F-statistics. https://github.com/jgx65/hierfstat (2015).

  • 60.

    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: iNterpolation and EXTrapolation for species diversity. R package version 2.0.19. https://chao.stat.nthu.edu.tw/blog/software-download/ (2019).

  • 61.

    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).

    Article  Google Scholar 

  • 62.

    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 63.

    Jombart, T. et al. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Jombart, T. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 65.

    Pastore, M. Overlapping: a R package for estimating overlapping in empirical distributions. J. Open Source Softw. 3, 1023 (2018).

    ADS  Article  Google Scholar 

  • 66.

    Cornuet, J.-M. et al. DIYABC v20: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30, 1187–1189 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 67.

    Goczał, J., Rossa, R. & Tofilski, A. Intersexual and intrasexual patterns of horn size and shape variation in the European rhinoceros beetle: quantifying the shape of weapons. Biol. J. Linn. Soc. 127, 34–43 (2019).

    Article  Google Scholar 

  • 68.

    Rohlf, F. & Slice, D. Extensions of the procrustes method for the optimal superimposition of landmarks. Syst. Zool. 39, 40–59 (1990).

    Article  Google Scholar 

  • 69.

    Cattell, R. B. The scree test for the number of factors. Multivariate Behav. Res. 1, 245–276 (1966).

    CAS  PubMed  Article  Google Scholar 

  • 70.

    TIBCO Software Inc. Statistica (data analysis software system) version 13. https://www.statsoft.pl/statistica-i-tibco-software/ (2017).

  • 71.

    Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 72.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.r-project.org/ (2015).


  • Source: Ecology - nature.com

    Phylogeny resolved, metabolism revealed: functional radiation within a widespread and divergent clade of sponge symbionts

    Geologists raise the speed limit for how fast continental crust can form