in

Clustered versus catastrophic global vertebrate declines

  • 1.

    IUCN. The IUCN Red List of Threatened Species. version 2019-3 http://www.iucnredlist.org (2019).

  • 2.

    WWF. Living Planet Report 2018: Aiming Higher (eds. Grooten, N. & Almond, R. E. A.) (WWF, 2018).

  • 3.

    Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).

    Article  Google Scholar 

  • 5.

    Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).

    CAS  Article  Google Scholar 

  • 6.

    Willig, M. R. et al. Populations are not declining and food webs are not collapsing at the Luquillo Experimental Forest. Proc. Natl Acad. Sci. USA 116, 12143–12144 (2019).

    CAS  Article  Google Scholar 

  • 7.

    Daskalova, G. N., Myers-Smith, I. H. & Godlee, J. L. All is not decline across global vertebrate populations. Preprint at https://doi.org/10.1101/272898 (2018).

  • 8.

    Dornelas, M. et al. A balance of winners and losers in the Anthropocene. Ecol. Lett. 22, 847–854 (2019).

    Article  Google Scholar 

  • 9.

    Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).

    Article  Google Scholar 

  • 12.

    Leung, B., Greenberg, D. A. & Green, D. M. Trends in mean growth and stability in temperate vertebrate populations. Divers. Distrib. 23, 1372–1380 (2017).

    Article  Google Scholar 

  • 13.

    McGill, B. J., Dornelas, M., Gotelli, N. J. & Magurran, A. E. Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol. Evol. 30, 104–113 (2015).

    Article  Google Scholar 

  • 14.

    Anderson, S. C., Branch, T. A., Cooper, A. B. & Dulvy, N. K. Black-swan events in animal populations. Proc. Natl Acad. Sci. USA 114, 3252–3257 (2017).

    CAS  Article  Google Scholar 

  • 15.

    LPI. Living Planet Index. www.livingplanetindex.org/ (2016).

  • 16.

    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

    ADS  CAS  Article  Google Scholar 

  • 17.

    Connors, B. M., Cooper, A. B., Peterman, R. M. & Dulvy, N. K. The false classification of extinction risk in noisy environments. Proc. R. Soc. Lond. B 281, 20132935 (2014).

    Google Scholar 

  • 18.

    Hanks, E. M., Hooten, M. B. & Baker, F. A. Reconciling multiple data sources to improve accuracy of large-scale prediction of forest disease incidence. Ecol. Appl. 21, 1173–1188 (2011).

    Article  Google Scholar 

  • 19.

    Youngflesh, C. & Lynch, H. J. Black-swan events: population crashes or temporary emigration? Proc. Natl Acad. Sci. USA 114, E8953–E8954 (2017).

    CAS  Article  Google Scholar 

  • 20.

    Fournier, A. M. V., White, E. R. & Heard, S. B. Site-selection bias and apparent population declines in long-term studies. Conserv. Biol. 33, 1370–1379 (2019).

    Article  Google Scholar 

  • 21.

    Newbold, T. et al. Ecological traits affect the response of tropical forest bird species to land-use intensity. Proc. R. Soc. Lond. B 280, 20122131 (2013).

    Google Scholar 

  • 22.

    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

    ADS  CAS  Article  Google Scholar 

  • 23.

    Allan, J. R. et al. Hotspots of human impact on threatened terrestrial vertebrates. PLoS Biol. 17, e3000158 (2019).

    Article  Google Scholar 

  • 24.

    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).

    ADS  CAS  Article  Google Scholar 

  • 25.

    O’Neill, S. & Nicholson-Cole, S. “Fear won’t do it”: promoting positive engagement with climate change through visual and iconic representations Sci. Commun. 30, 355–379 (2009).

    Article  Google Scholar 

  • 26.

    Brennan, L. & Binney, W. Fear, guilt, and shame appeals in social marketing. J. Bus. Res. 63, 140–146 (2010).

    Article  Google Scholar 

  • 27.

    Myhrvold, N. P. et al. An amniote life-history database to perform comparative analyses with birds, mammals, and reptiles. Ecology 96, 3109 (2015).

    Article  Google Scholar 

  • 28.

    Froese, R. & Pauly, D. FishBase version 12/2019 www.fishbase.org (2019).

  • 29.

    Boettiger, C., Lang, D. T. & Wainwright, P. C. rfishbase: exploring, manipulating and visualizing FishBase data from R. J. Fish Biol. 81, 2030–2039 (2012).

    CAS  Article  Google Scholar 

  • 30.

    Oliveira, B. F., São-Pedro, V. A., Santos-Barrera, G., Penone, C. & Costa, G. C. AmphiBIO, a global database for amphibian ecological traits. Sci. Data 4, 170123 (2017).

    Article  Google Scholar 

  • 31.

    Collen, B. et al. Monitoring change in vertebrate abundance: the living planet index. Conserv. Biol. 23, 317–327 (2009).

    Article  Google Scholar 

  • 32.

    Gelman, A., Hwang, J. & Vehtari, A. Understanding predictive information criteria for Bayesian models. Stat. Comput. 24, 997–1016 (2014).

    MathSciNet  Article  Google Scholar 

  • 33.

    Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).

    Article  Google Scholar 

  • 34.

    R Core Team. R: A Language and Environment for Statistical Computing http://www.R-project.org/ (R Foundation for Statistical Computing, 2016).

  • 35.

    McRae, L., Deinet, S. & Freeman, R. The diversity-weighted living planet index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156 (2017).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Migrant birds and mammals live faster than residents

    Study identifies reasons for soaring nuclear plant cost overruns in the U.S.