IUCN. The IUCN Red List of Threatened Species. version 2019-3 http://www.iucnredlist.org (2019).
WWF. Living Planet Report 2018: Aiming Higher (eds. Grooten, N. & Almond, R. E. A.) (WWF, 2018).
Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).
Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).
Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).
Willig, M. R. et al. Populations are not declining and food webs are not collapsing at the Luquillo Experimental Forest. Proc. Natl Acad. Sci. USA 116, 12143–12144 (2019).
Daskalova, G. N., Myers-Smith, I. H. & Godlee, J. L. All is not decline across global vertebrate populations. Preprint at https://doi.org/10.1101/272898 (2018).
Dornelas, M. et al. A balance of winners and losers in the Anthropocene. Ecol. Lett. 22, 847–854 (2019).
Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013).
Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).
Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).
Leung, B., Greenberg, D. A. & Green, D. M. Trends in mean growth and stability in temperate vertebrate populations. Divers. Distrib. 23, 1372–1380 (2017).
McGill, B. J., Dornelas, M., Gotelli, N. J. & Magurran, A. E. Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol. Evol. 30, 104–113 (2015).
Anderson, S. C., Branch, T. A., Cooper, A. B. & Dulvy, N. K. Black-swan events in animal populations. Proc. Natl Acad. Sci. USA 114, 3252–3257 (2017).
LPI. Living Planet Index. www.livingplanetindex.org/ (2016).
Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).
Connors, B. M., Cooper, A. B., Peterman, R. M. & Dulvy, N. K. The false classification of extinction risk in noisy environments. Proc. R. Soc. Lond. B 281, 20132935 (2014).
Hanks, E. M., Hooten, M. B. & Baker, F. A. Reconciling multiple data sources to improve accuracy of large-scale prediction of forest disease incidence. Ecol. Appl. 21, 1173–1188 (2011).
Youngflesh, C. & Lynch, H. J. Black-swan events: population crashes or temporary emigration? Proc. Natl Acad. Sci. USA 114, E8953–E8954 (2017).
Fournier, A. M. V., White, E. R. & Heard, S. B. Site-selection bias and apparent population declines in long-term studies. Conserv. Biol. 33, 1370–1379 (2019).
Newbold, T. et al. Ecological traits affect the response of tropical forest bird species to land-use intensity. Proc. R. Soc. Lond. B 280, 20122131 (2013).
Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).
Allan, J. R. et al. Hotspots of human impact on threatened terrestrial vertebrates. PLoS Biol. 17, e3000158 (2019).
Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).
O’Neill, S. & Nicholson-Cole, S. “Fear won’t do it”: promoting positive engagement with climate change through visual and iconic representations Sci. Commun. 30, 355–379 (2009).
Brennan, L. & Binney, W. Fear, guilt, and shame appeals in social marketing. J. Bus. Res. 63, 140–146 (2010).
Myhrvold, N. P. et al. An amniote life-history database to perform comparative analyses with birds, mammals, and reptiles. Ecology 96, 3109 (2015).
Froese, R. & Pauly, D. FishBase version 12/2019 www.fishbase.org (2019).
Boettiger, C., Lang, D. T. & Wainwright, P. C. rfishbase: exploring, manipulating and visualizing FishBase data from R. J. Fish Biol. 81, 2030–2039 (2012).
Oliveira, B. F., São-Pedro, V. A., Santos-Barrera, G., Penone, C. & Costa, G. C. AmphiBIO, a global database for amphibian ecological traits. Sci. Data 4, 170123 (2017).
Collen, B. et al. Monitoring change in vertebrate abundance: the living planet index. Conserv. Biol. 23, 317–327 (2009).
Gelman, A., Hwang, J. & Vehtari, A. Understanding predictive information criteria for Bayesian models. Stat. Comput. 24, 997–1016 (2014).
Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).
R Core Team. R: A Language and Environment for Statistical Computing http://www.R-project.org/ (R Foundation for Statistical Computing, 2016).
McRae, L., Deinet, S. & Freeman, R. The diversity-weighted living planet index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156 (2017).
Source: Ecology - nature.com