in

Combining genetic markers with stable isotopes in otoliths reveals complexity in the stock structure of Atlantic bluefin tuna (Thunnus thynnus)

  • 1.

    FAO. The State of World Fisheries and Aquaculture 2018-Meeting the sustainable development goals. Rome. Licence: CC BY-NC-SA 3.0 IGO. (2018). https://www.fao.org/documents/card/en/c/I9540EN/.

  • 2.

    Cheung, W. W. L. et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob. Change Biol. 16, 24–35. https://doi.org/10.1111/j.1365-2486.2009.01995.x (2010).

    ADS  Article  Google Scholar 

  • 3.

    Myers, R. A. & Worm, B. Rapid worldwide depletion of predatory fish communities. Nature 423, 280–283. https://doi.org/10.1038/nature01610 (2003).

    ADS  Article  PubMed  CAS  Google Scholar 

  • 4.

    Worm, B. et al. Rebuilding global fisheries. Science 325, 578–585. https://doi.org/10.1126/science.1173146 (2009).

    ADS  Article  PubMed  CAS  Google Scholar 

  • 5.

    van Gemert, R. & Andersen, K. H. Challenges to fisheries advice and management due to stock recovery. ICES J. Mar. Sci. 75, 1864–1870. https://doi.org/10.1093/icesjms/fsy084 (2018).

    Article  Google Scholar 

  • 6.

    Cadrin, S. X., Kerr, L. A. & Mariani, S. Stock identification methods: an overview, in Stock Identification Methods: Applications in Fishery Science (eds S.X. Cadrin, L.A. Kerr, & S. Mariani) 535–552 (Academic Press, 2014).

  • 7.

    Kerr, L. A. et al. Lessons learned from practical approaches to reconcile mismatches between biological population structure and stock units of marine fish. ICES J. Mar. Sci. 74, 1708–1722. https://doi.org/10.1093/icesjms/fsw188 (2017).

    Article  Google Scholar 

  • 8.

    Ovenden, J. R., Berry, O., Welch, D. J., Buckworth, R. C. & Dichmont, C. M. Ocean’s eleven: A critical evaluation of the role of population, evolutionary and molecular genetics in the management of wild fisheries. Fish. Fish. 16, 125–159. https://doi.org/10.1111/faf.12052 (2015).

    Article  Google Scholar 

  • 9.

    Conover, D. O., Clarke, L. M., Munch, S. B. & Wagner, G. N. Spatial and temporal scales of adaptive divergence in marine fishes and the implications for conservation. J. Fish Biol. 69, 21–47. https://doi.org/10.1111/j.1095-8649.2006.01274.x (2006).

    Article  Google Scholar 

  • 10.

    Stockwell, C. A., Hendry, A. P. & Kinnison, M. T. Contemporary evolution meets conservation biology. Trends Ecol. Evol. 18, 94–101. https://doi.org/10.1016/s0169-5347(02)00044-7 (2003).

    Article  Google Scholar 

  • 11.

    Begg, G. A. & Waldman, J. R. An holistic approach to fish stock identification. Fish. Res. 43, 35–44. https://doi.org/10.1016/S0165-7836(99)00065-X (1999).

    Article  Google Scholar 

  • 12.

    Hastings, A. & Botsford, L. W. Persistence of spatial populations depends on returning home. Proc. Natl. Acad. Sci. USA 103, 6067–6072. https://doi.org/10.1073/pnas.0506651103 (2006).

    ADS  Article  PubMed  CAS  Google Scholar 

  • 13.

    Harma, C., Brophy, D., Minto, C. & Clarke, M. The rise and fall of autumn-spawning herring (Clupea harengus L.) in the Celtic Sea between 1959 and 2009: Temporal trends in spawning component diversity. Fish. Res. 121–122, 31–42. https://doi.org/10.1016/j.fishres.2012.01.005 (2012).

    Article  Google Scholar 

  • 14.

    Brophy, D. & King, P. A. Larval otolith growth histories show evidence of stock structure in north east Atlantic blue whiting (Micromesistius poutassou). ICES J. Mar. Sci. 64, 1136–1144. https://doi.org/10.1093/icesjms/fsm080 (2007).

    Article  Google Scholar 

  • 15.

    Secor, D. H. The unit stock concept: bounded fish and fisheries in Stock Identification Methods 2nd edn (eds CadrinLisa, S.X. & Mariani, A.K.) 7–28 (Academic Press, 2014).

  • 16.

    Marengo, M. et al. Combining microsatellite, otolith shape and parasites community analyses as a holistic approach to assess population structure of Dentex dentex. J. Sea Res. 128, 1–14. https://doi.org/10.1016/j.seares.2017.07.003 (2017).

    ADS  Article  Google Scholar 

  • 17.

    Taillebois, L. et al. Strong population structure deduced from genetics, otolith chemistry and parasite abundances explains vulnerability to localized fishery collapse in a large Sciaenid fish, Protonibea diacanthus. Evol. Appl. 10, 978–993. https://doi.org/10.1111/eva.12499 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 18.

    Welch, D. J. et al. Integrating different approaches in the definition of biological stocks: A northern Australian multi-jurisdictional fisheries example using grey mackerel, Scomberomorus semifasciatus. Mar. Policy 55, 73–80. https://doi.org/10.1016/j.marpol.2015.01.010 (2015).

    Article  Google Scholar 

  • 19.

    Reis-Santos, P. et al. Reconciling differences in natural tags to infer demographic and genetic connectivity in marine fish populations. Sci. Rep. 8, 10343. https://doi.org/10.1038/s41598-018-28701-6 (2018).

    ADS  Article  PubMed  PubMed Central  CAS  Google Scholar 

  • 20.

    Kritzer, J. P. & Liu, O. R. Fishery management strategies for addressing complex spatial structure in marine fish stocks in Stock Identification Methods 2nd edn (eds Cadrin, S.X., Kerr, L.A., & Mariani, S.) 29–57 (Academic Press, 2014).

  • 21.

    Abaunza, P. et al. Stock identity of horse mackerel (Trachurus trachurus) in the Northeast Atlantic and Mediterranean Sea: Integrating the results from different stock identification approaches. Fish. Res. 89, 196–209. https://doi.org/10.1016/j.fishres.2007.09.022 (2008).

    Article  Google Scholar 

  • 22.

    Sala-Bozano, M., Ketmaier, V. & Mariani, S. Contrasting signals from multiple markers illuminate population connectivity in a marine fish. Mol. Ecol. 18, 4811–4826. https://doi.org/10.1111/j.1365-294X.2009.04404.x (2009).

    Article  PubMed  CAS  Google Scholar 

  • 23.

    Fromentin, J. M. & Powers, J. E. Atlantic bluefin tuna: Population dynamics, ecology, fisheries and management. Fish Fish. 6, 281–306. https://doi.org/10.1111/j.1467-2979.2005.00197.x (2005).

    Article  Google Scholar 

  • 24.

    Collette, B. B. et al. High value and long life-double jeopardy for tunas and billfishes. Science 333, 291–292. https://doi.org/10.1126/science.1208730 (2011).

    ADS  Article  PubMed  CAS  Google Scholar 

  • 25.

    Collette, B. et al. Thunnus thynnus. The IUCN Red List of Threatened Species 2011: e.T21860A9331546. https://doi.org/10.2305/IUCN.UK.2011-2.RLTS.T21860A9331546.en. (2011) (Downloaded on 25 June 2020).

  • 26.

    Fromentin, J.-M., Bonhommeau, S., Arrizabalaga, H. & Kell, L. T. The spectre of uncertainty in management of exploited fish stocks: The illustrative case of Atlantic bluefin tuna. Mar. Policy 47, 8–14. https://doi.org/10.1016/j.marpol.2014.01.018 (2014).

    Article  Google Scholar 

  • 27.

    ICCAT. Report of the standing committee on research and statistics (SCRS). Madrid, Spain, 30 September–4 October 2019. https://www.iccat.int/Documents/Meetings/Docs/2019/REPORTS/2019_SCRS_ENG.pdf (2019).

  • 28.

    ICCAT. Report of the 2017 ICCAT bluefin stock assessment meeting. Madrid, Spain 20–28 July, 2017. https://www.iccat.int/Documents/SCRS/DetRep/BFT_SA_ENG.pdf (2017).

  • 29.

    Rooker, J. R. et al. Crossing the line: Migratory and homing behaviors of Atlantic bluefin tuna. Mar. Ecol. Prog. Ser. 504, 265–276. https://doi.org/10.3354/meps10781 (2014).

    ADS  Article  CAS  Google Scholar 

  • 30.

    Arregui, I. et al. Movements and geographic distribution of juvenile bluefin tuna in the Northeast Atlantic, described through internal and satellite archival tags. ICES J. Mar. Sci. 75, 1560–1572. https://doi.org/10.1093/icesjms/fsy056 (2018).

    Article  Google Scholar 

  • 31.

    Lutcavage, M. E., Brill, R. W., Skomal, G. B., Chase, B. C. & Howey, P. W. Results of pop-up satellite tagging of spawning size class fish in the Gulf of Maine: Do North Atlantic bluefin tuna spawn in the mid-Atlantic?. Can. J. Fish. Aquat. Sci. 56, 173–177. https://doi.org/10.1139/cjfas-56-2-173 (1999).

    Article  Google Scholar 

  • 32.

    Block, B. A. et al. Electronic tagging and population structure of Atlantic bluefin tuna. Nature 434, 1121–1127. https://doi.org/10.1038/nature03463 (2005).

    ADS  Article  PubMed  CAS  Google Scholar 

  • 33.

    Boustany, A. M., Reeb, C. A. & Block, B. A. Mitochondrial DNA and electronic tracking reveal population structure of Atlantic bluefin tuna (Thunnus thynnus). Mar. Biol. 156, 13–24. https://doi.org/10.1007/s00227-008-1058-0 (2008).

    Article  CAS  Google Scholar 

  • 34.

    Rodríguez-Ezpeleta, N. et al. Determining natal origin for improved management of Atlantic bluefin tuna. Front. Ecol. Environ. 17, 439–444. https://doi.org/10.1002/fee.2090 (2019).

    Article  Google Scholar 

  • 35.

    Rooker, J. R. et al. Natal homing and connectivity in Atlantic bluefin tuna populations. Science 322, 742–744. https://doi.org/10.1126/science.1161473 (2008).

    ADS  Article  PubMed  CAS  Google Scholar 

  • 36.

    Block, B. A. et al. Migratory movements, depth preferences, and thermal biology of Atlantic bluefin tuna. Science 293, 1310–1314. https://doi.org/10.1126/science.1061197 (2001).

    ADS  Article  PubMed  CAS  Google Scholar 

  • 37.

    Galuardi, B. et al. Complex migration routes of Atlantic bluefin tuna (Thunnus thynnus) question current population structure paradigm. Can. J. Fish. Aquat. Sci. 67, 966–976. https://doi.org/10.1139/f10-033 (2010).

    Article  Google Scholar 

  • 38.

    McGowan, M. F. & Richards, W. J. Bluefin tuna, Thunnus thynnus, larvae in the Gulf Stream off the southeastern United States—satellite and shipboard observations of their environment. Fish. Bull. 87, 615–631. https://spo.nmfs.noaa.gov/sites/default/files/pdf-content/1989/873/mcgowan.pdf (1989).

  • 39.

    Richardson, D. E. et al. Discovery of a spawning ground reveals diverse migration strategies in Atlantic bluefin tuna (Thunnus thynnus). Proc. Natl. Acad. Sci. USA 113, 3299–3304. https://doi.org/10.1073/pnas.1525636113 (2016).

    ADS  Article  PubMed  CAS  Google Scholar 

  • 40.

    Muhling, B. A. et al. Collection of larval bluefin tuna (Thunnus thynnus) outside documented western Atlantic spawning grounds. Bull. Mar. Sci. 87, 687–694. https://doi.org/10.5343/bms.2010.1101 (2011).

    Article  Google Scholar 

  • 41.

    Leach, A. W., Levontin, P., Holt, J., Kell, L. T. & Mumford, J. D. Identification and prioritization of uncertainties for management of Eastern Atlantic bluefin tuna (Thunnus thynnus). Mar. Policy 48, 84–92. https://doi.org/10.1016/j.marpol.2014.03.010 (2014).

    Article  Google Scholar 

  • 42.

    Carruthers, T. Evaluating management strategies for Atlantic bluefin tuna, Report 5: Completion and release of the first comprehensive ABFT MSE package for use by stakeholders in MP testing. Short-term contract for modelling approaches: support to BFT assessment (GBYP 06/2017) of the Atlantic-wide research programme on bluefin tuna (ICCAT-GBYP-Phase 7). https://www.iccat.int/GBYP/Docs/Modelling_Phase_7_MSE_Framework.pdf (2018).

  • 43.

    Albaina, A. et al. Single nucleotide polymorphism discovery in albacore and Atlantic bluefin tuna provides insights into worldwide population structure. Anim. Genet. 44, 678–692. https://doi.org/10.1111/age.12051 (2013).

    Article  PubMed  CAS  Google Scholar 

  • 44.

    Carlsson, J., McDowell, J. R., Carlsson, J. E. L. & Graves, J. E. Genetic identity of YOY bluefin tuna from the eastern and western Atlantic spawning areas. J. Hered. 98, 23–28. https://doi.org/10.1093/jhered/esl046 (2007).

    Article  PubMed  CAS  Google Scholar 

  • 45.

    Puncher, G. N. et al. Spatial dynamics and mixing of bluefin tuna in the Atlantic Ocean and Mediterranean Sea revealed using next-generation sequencing. Mol. Ecol. Resour. 18, 620–638. https://doi.org/10.1111/1755-0998.12764 (2018).

    Article  PubMed  CAS  Google Scholar 

  • 46.

    Brophy, D. et al. Otolith shape variation in bluefin tuna (Thunnus thynnus) from different regions of the North Atlantic: A potential marker of stock origin. Mar. Freshw. Res. 67, 1023–1036. https://doi.org/10.1071/MF15086 (2016).

    Article  Google Scholar 

  • 47.

    Dickhut, R. M. et al. Atlantic bluefin tuna (Thunnus thynnus) population dynamics delineated by organochlorine tracers. Environ. Sci. Technol. 43, 8522–8527. https://doi.org/10.1021/es901810e (2009).

    ADS  Article  PubMed  CAS  Google Scholar 

  • 48.

    Fraile, I., Arrizabalaga, H. & Rooker, J. R. Origin of Atlantic bluefin tuna (Thunnus thynnus) in the Bay of Biscay. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsu156 (2014).

    Article  Google Scholar 

  • 49.

    Rooker, J. R. et al. Wide-ranging temporal variation in transoceanic movement and population mixing of bluefin tuna in the North Atlantic Ocean. Front. Mar. Sci. 6, 398. https://doi.org/10.3389/fmars.2019.00398 (2019).

    Article  Google Scholar 

  • 50.

    Corriero, A. et al. Size and age at sexual maturity of female bluefin tuna (Thunnus thynnus L. 1758) from the Mediterranean Sea. J. Appl. Ichthyol. 21, 483–486. https://doi.org/10.1111/j.1439-0426.2005.00700.x (2005).

    Article  Google Scholar 

  • 51.

    Heinisch, G., Rosenfeld, H., Knapp, J. M., Gordin, H. & Lutcavage, M. E. Sexual maturity in western Atlantic bluefin tuna. Sci. Rep. 4, 7205–7205. https://doi.org/10.1038/srep07205 (2014).

    ADS  Article  PubMed  PubMed Central  CAS  Google Scholar 

  • 52.

    Muhling, B. et al. Reproduction and larval biology in tunas, and the importance of restricted area spawning grounds. Rev. Fish Biol. Fish. https://doi.org/10.1007/s11160-017-9471-4 (2017).

    Article  Google Scholar 

  • 53.

    Aranda, G., Abascal, F. J., Varela, J. L. & Medina, A. Spawning behaviour and post-spawning migration patterns of atlantic bluefin tuna (Thunnus thynnus) ascertained from satellite archival tags. PLoS ONE 8, e76445. https://doi.org/10.1371/journal.pone.0076445 (2013).

    ADS  Article  PubMed  PubMed Central  CAS  Google Scholar 

  • 54.

    Rooker, J. R. et al. Evidence of trans-Atlantic movement and natal homing of bluefin tuna from stable isotopes in otoliths. Mar. Ecol. Prog. Ser. 368, 231–239. https://doi.org/10.3354/meps07602 (2008).

    ADS  Article  Google Scholar 

  • 55.

    Liaw, A. & Wiener, M. Classification and Regression by randomForest. R News 2, 18–22. https://cogns.northwestern.edu/cbmg/LiawAndWiener2002.pdf (2002).

  • 56.

    R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2018).

  • 57.

    Mercier, L. et al. Selecting statistical models and variable combinations for optimal classification using otolith microchemistry. Ecol. Appl. 21, 1352–1364. https://doi.org/10.1890/09-1887.1 (2011).

    Article  PubMed  Google Scholar 

  • 58.

    Breiman, L. Random forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A:1010933404324 (2001).

    Article  MATH  Google Scholar 

  • 59.

    Strobl, C., Malley, J. & Tutz, G. An introduction to recursive partitioning: Rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychol. Methods 14, 323–348. https://doi.org/10.1037/a0016973 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Genuer, R., Poggi, J.-M. & Tuleau-Malot, C. VSURF: An R package for variable selection using random forests. R J. https://doi.org/10.32614/RJ-2015-018 (2015).

    Article  Google Scholar 

  • 61.

    Molnar, C., Bischl, B. & Casalicchio, G. iml: An R package for interpretable machine learning. J. Open Source Softw. 3(26), 786. https://doi.org/10.21105/joss.00786 (2018).

    ADS  Article  Google Scholar 

  • 62.

    Ruckdeschel, R., Kohl, K., Stabla, T. & Camphausen, F. S4 Classes for Distributions. R News 6 (2), 2–6. https://CRAN.R-project.org/doc/Rnews/ (2006).

  • 63.

    Trueman, C. N., MacKenzie, K. M. & Palmer, M. R. Identifying migrations in marine fishes through stable-isotope analysis. J. Fish. Biol. 81, 826–847. https://doi.org/10.1111/j.1095-8649.2012.03361.x (2012).

    Article  PubMed  CAS  Google Scholar 

  • 64.

    Labelle, M., Hoch, T., Liorzou, B. & Bigot, J.-L. Indices of bluefin tuna (Thunnus thynnus thynnus) abundance derived from sale records of French purse seine catches in the Mediterranean Sea. Aquat. Living Resour. 10, 329–342. https://doi.org/10.1051/alr:1997036 (1997).

    Article  Google Scholar 

  • 65.

    LeGrande, A. N. & Schmidt, G. A. Global gridded data set of the oxygen isotopic composition in seawater. Geophys. Res. Lett. https://doi.org/10.1029/2006GL026011 (2006).

    Article  Google Scholar 

  • 66.

    Ishii, M., Shouji, A., Sugimoto, S. & Matsumoto, T. Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe Collection. Int. J. Climatol. 25, 865–879. https://doi.org/10.1002/joc.1169 (2005).

    Article  Google Scholar 

  • 67.

    Kitagawa, T. et al. Otolith δ18O of Pacific bluefin tuna Thunnus orientalis as an indicator of ambient water temperature. Mar. Ecol. Prog. Ser. 481, 199–209. https://doi.org/10.3354/meps10202 (2013).

    ADS  Article  CAS  Google Scholar 

  • 68.

    Rooker, J. R. et al. Life history and stock structure of Atlantic bluefin tuna (Thunnus thynnus). Rev. Fish. Sci. 15, 265–310. https://doi.org/10.1080/10641260701484135 (2007).

    Article  Google Scholar 

  • 69.

    Friedman, J. H. & Popescu, B. E. Predictive learning via rule ensembles. Ann. Appl. Stat. 2, 916–954. https://doi.org/10.1214/07-AOAS148 (2008).

    MathSciNet  Article  MATH  Google Scholar 

  • 70.

    Gruber, N. et al. Spatiotemporal patterns of carbon-13 in the global surface oceans and the oceanic suess effect. Global Biogeochem. Cycles 13, 307–335. https://doi.org/10.1029/1999GB900019 (1999).

    ADS  Article  CAS  Google Scholar 

  • 71.

    Martino, J. C., Doubleday, Z. A. & Gillanders, B. M. Metabolic effects on carbon isotope biomarkers in fish. Ecol. Indic. 97, 10–16. https://doi.org/10.1016/j.ecolind.2018.10.010 (2019).

    Article  CAS  Google Scholar 

  • 72.

    Cort, J. L., Arregui, I., Estruch, V. D. & Deguara, S. Validation of the growth equation applicable to the eastern Atlantic bluefin tuna, Thunnus thynnus (L.), using Lmax, tag-recapture, and first dorsal spine analysis. Rev. Fish. Sci. Aquac. 22, 239–255. https://doi.org/10.1080/23308249.2014.931173 (2014).

    Article  Google Scholar 

  • 73.

    Fromentin, J.-M. Descriptive analysis of the ICCAT bluefin tuna tagging database. Collect. Vol. Sci. Pap. ICCAT 54, 353–362 (2002).

    Google Scholar 

  • 74.

    Arrizabalaga, H. et al. Life history and migrations of Mediterranean bluefin tuna in The Future of Bluefin Tunas (ed B.A. Block) (John Hopkins University Press, 2019).

  • 75.

    Quílez-Badia, G. et al. The WWF/GBYP multi-annual bluefin tuna electronic tagging program (2008–2013): Repercussions for management. Collect. Vol. Sci. Pap. ICCAT 71(4), 1789–1802 (2015).

    Google Scholar 

  • 76.

    Di Natale, A., Tensek, S. & García, A. P. Preliminary information about the ICCAT GBYP tagging activities in Phase 5. Collect. Vol. Sci. Pap. ICCAT 72(6), 1589–1613 (2016).

    Google Scholar 

  • 77.

    Kerr, L. A., Cadrin, S. X., Secor, D. H. & Taylor, N. G. Modeling the implications of stock mixing and life history uncertainty of Atlantic bluefin tuna. Can. J. Fish. Aquat. Sci. 74, 1990–2004. https://doi.org/10.1139/cjfas-2016-0067 (2016).

    Article  Google Scholar 

  • 78.

    Kerr, L. A. et al. Mixed stock origin of Atlantic bluefin tuna in the US rod and reel fishery (Gulf of Maine) and implications for fisheries management. Fish. Res. 224, 105461. https://doi.org/10.1016/j.fishres.2019.105461 (2020).

    Article  Google Scholar 

  • 79.

    H. Wickham. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag New York, 2016).


  • Source: Ecology - nature.com

    Environmental stability impacts the differential sensitivity of marine microbiomes to increases in temperature and acidity

    Assessing the effect of wind farms in fauna with a mathematical model