in

Comparing fish prey diversity for a critically endangered aquatic mammal in a reserve and the wild using eDNA metabarcoding

  • 1.

    Gangloff, M. M., Edgar, G. J. & Wilson, B. Imperilled species in aquatic ecosystems: emerging threats, management and future prognosis. Aquatic Conserv. Mar. Freshw. Ecosyst. 26, 858–871 (2016).

    Article  Google Scholar 

  • 2.

    WWF. Living Planet Report—2018: Aiming Higher (eds Grooten, M. & Almond, R.E.A.). WWF, Gland, Switzerland (2018).

  • 3.

    Zhou, X. et al. Population genomics of finless porpoises reveal an incipient cetacean species adapted to freshwater. Nat. Commun. 9, 1276 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 4.

    Mei, Z. et al. Accelerating population decline of Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis). Biol. Conserv. 153, 192–200 (2012).

    Article  Google Scholar 

  • 5.

    Wang, D., Turvey, S.T., Zhao, X. & Mei, Z. Neophocaena asiaeorientalisssp.asiaeorientalis. The IUCN Red List of Threatened Species 2013 e.T43205774A45893487, http://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T43205774A45893487.en(2013).

  • 6.

    Yang, J. et al. A preliminary study on diet of the Yangtze finless porpoise using next-generation sequencing techniques. Mar. Mammal Sci. 35, 1579–1586 (2019).

    CAS  Article  Google Scholar 

  • 7.

    Wang, D. Population status, threats and conservation of the Yangtze finless porpoise. Chin. Sci. Bull. 54, 3473–3484 (2009).

    CAS  Google Scholar 

  • 8.

    Wu, J. et al. Progress in studies on water ecology in Tian’e Zhou Oxbow. Acta Hydrobiol. Sin. 41, 935–946 (2017) (In Chinese).

    Google Scholar 

  • 9.

    Nabi, G., Hao, Y., Robeck, T. R., Zheng, J. & Wang, D. Physiological consequences of biologic state and habitat dynamics on the critically endangered Yangtze finless porpoises (Neophocaena asiaeorientalis ssp. asiaeorientalis) dwelling in the wild and semi-natural environment. Conserv. Physiol. 6, coy072 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Stewart, K., Ma, H., Zheng, J. & Zhao, J. Using environmental DNA to assess population-wide spatiotemporal reserve use. Conserv. Biol. 31, 1173–1182 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Chen, M. et al. Parentage-based group composition and dispersal pattern studies of the Yangtze Finless Porpoise population in Poyang Lake. Int. J. Mol. Sci. 17, 1268 (2016).

    PubMed Central  Article  Google Scholar 

  • 12.

    Civade, R. et al. Spatial representativeness of environmental DNA metabarcoding signal for fish biodiversity assessment in a natural freshwater system. PLoS ONE 11, e0157366 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 13.

    Evans, N. T. et al. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Mol. Ecol. Resour. 16, 29–41 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Hänfling, B. et al. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Mol. Ecol. 25, 3101–3119 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 15.

    Fujii, K. et al. Environmental DNA metabarcoding for fish community analysis in backwater lakes: a comparison of capture methods. PLoS ONE 14, e0210357 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Andruszkiewicz, E. A. et al. Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding. PLoS ONE 12, e0176343 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 17.

    Harper, L. R. et al. Needle in a haystack? A comparison of eDNA metabarcoding and targeted qPCR for detection of the great crested newt (Triturus cristatus). Ecol. Evol. 8, 6330–6341 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Günther, B., Knebelsberger, T., Neumann, H., Laakmann, S. & Arbizu, P. M. Metabarcoding of marine environmental DNA based on mitochondrial and nuclear genes. Sci. Rep. 8, 14822 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 19.

    Djurhuus, A. et al. Evaluation of marine zooplankton community structure through environmental DNA metabarcoding. Limnol. Oceanogr. Methods 16, 209–221 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4, 423–425 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Taberlet, P., Coissac, E., Hajibabaei, M. & Rieseberg, L. H. Environmental DNA. Mol. Ecol. 21, 1789–1793 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Thomsen, P. F. et al. Monitoring endangered freshwater biodiversity using environmental DNA. Mol. Ecol. 21, 2565–2573 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Stewart, K. A. Understanding the biotic and abiotic factors on sources of aquatic environmental DNA. Biodivers. Conserv. 28, 983–1001 (2019).

    Article  Google Scholar 

  • 24.

    Lopes, C. M. et al. eDNA metabarcoding: a promising method for anuran surveys in highly diverse tropical forests. Mol. Ecol. Resour. 17, 904–914 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Hobbs, J., Helbing, C. C. & Veldhoen, N. Environmental DNA protocol for freshwater aquatic ecosystems version 2.2. Report for the BC Ministry of Environment, Victoria BC Canada (2017).

  • 26.

    Laramie, M.B., Pilliod, D.S., Goldberg, C.S. & Strickler, K.M. Environmental DNA sampling protocolFiltering water to capture DNA from aquatic organisms.U.S. Geological Survey Techniques and Methods, book 2, chap. A13, 15 p. (2015).

  • 27.

    Ma, H. et al. Characterization, optimization, and validation of environmental DNA (eDNA) markers to detect an endangered aquatic mammal. Conserv. Genet. Resour. 8, 561–568 (2016).

    Article  Google Scholar 

  • 28.

    Thomsen, P. F. et al. Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS ONE 7, e41732 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Dougherty, M. M. et al. Environmental DNA (eDNA) detects the invasive rusty crayfish Orconectes rusticus at low abundances. J. Appl. Ecol. 53, 722–732 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Evans, N. T. et al. Fish community assessment with eDNA metabarcoding: effects of sampling design and bioinformatic filtering. Can. J. Fish. Aquat. Sci. 74, 1362–1374 (2017).

    CAS  Article  Google Scholar 

  • 31.

    Renshaw, M. A., Olds, B. P., Jerde, C. L., Mcveigh, M. M. & Lodge, D. M. The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol-chloroform-isoamyl alcohol DNA extraction. Mol. Ecol. Resour. 15, 168–176 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 32.

    Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Sym. Ser. 41, 95–98 (1999).

    CAS  Google Scholar 

  • 34.

    Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2, 150088 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Olds, B. P. et al. Estimating species richness using environmental DNA. Ecol. Evol. 6, 4214–4226 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Deiner, K. et al. Long-range PCR allows sequencing of mitochondrial genomes from environmental DNA. Methods Ecol. Evol. 8, 1888–1898 (2017).

    Article  Google Scholar 

  • 38.

    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Port, J. A. et al. Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA. Mol. Ecol. 25, 527–541 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 40.

    Pochon, X., Zaiko, A., Fletcher, L. M., Laroche, O. & Wood, S. A. Wanted dead or alive? Using metabarcoding of environmental DNA and RNA to distinguish living assemblages for biosecurity applications. PLoS ONE 12, e0187636 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 41.

    Sato, H., Sogo, Y., Doi, H. & Yamanaka, H. Usefulness and limitations of sample pooling for environmental DNA metabarcoding of freshwater fish communities. Sci. Rep. 7, 14860 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 42.

    Yamamoto, S. et al. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Sci. Rep. 7, 40368 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).

    Article  CAS  Google Scholar 

  • 44.

    Huson, D. H. et al. MEGAN Community Editioninteractive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12, e1004957 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 45.

    DiBattista, J. D. et al. Assessing the utility of eDNA as a tool to survey reef-fish communities in the Red Sea. Coral Reefs 36, 1245–1252 (2017).

    ADS  Article  Google Scholar 

  • 46.

    Siegenthaler, A. et al. Metabarcoding of shrimp stomach content: Harnessing a natural sampler for fish biodiversity monitoring. Mol. Ecol. Resour. 19, 206–220 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 47.

    Racine, J. S. RStudio: a platform-independent IDE for R and Sweave. J. Appl. Econ. 27, 167–172 (2012).

    Article  Google Scholar 

  • 48.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org (2018).

  • 49.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (eds Gentleman, R., Hornik, K. & Parmigiani, G.) 1–212 (Springer, 2009).

  • 50.

    Guevara, M. R., Hartmann, D. & Mendoza, M. diverse: an R package to analyze diversity in complex systems. R J. 8, 60–78 (2016).

    Article  Google Scholar 

  • 51.

    Valentini, A. et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25, 929–942 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    Stoeckle, M. Y., Soboleva, L. & Charlop-Powers, Z. Aquatic environmental DNA detects seasonal fish abundance and habitat preference in an urban estuary. PLoS ONE 12, e0175186 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 53.

    Thomsen, P. F. et al. Environmental DNA from seawater samples correlate with trawl catches of subarctic, deepwater fishes. PLoS ONE 11, e0165252 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 54.

    Huang, L., Wu, Z. & Li, J. Fish fauna, biogeography and conservation of freshwater fish in Poyang Lake Basin China. Environ. Biol. Fish. 96, 1229–1243 (2013).

    Article  Google Scholar 

  • 55.

    Gong, J. et al. Interannual variation of the fish community structure in the Tian-e-Zhou Oxbow of Yangtze River. J. Hydroecol. 39, 46–53 (2018) (In Chinese).

    Google Scholar 

  • 56.

    Gong, C., Chen, Z. & Cheng, F. The status and management suggestions of the Yangtze finless porpoise prey fish in the Tian-e-Zhou Oxbow of Yangtze River. China Fish. 6, 43–45 (2019) (In Chinese).

    Google Scholar 

  • 57.

    Wang, T., Wang, H., Sun, G., Huang, D. & Shen, J. Length–weight and length–length relationships for some Yangtze River fishes in Tian-e-zhou Oxbow China. J. Appl. Ichthyol. 28, 660–662 (2012).

    Article  Google Scholar 

  • 58.

    Yang, S., Li, M., Zhu, Q., Wang, M. & Liu, H. Spatial and temporal variations of fish assemblages in Poyanghu Lake. Resour. Environ. Yangtze Basin 24, 54–64 (2015) (In Chinese).

    CAS  Google Scholar 

  • 59.

    Jin, B. et al. Fish assemblage structure in relation to seasonal environmental variation in sub-lakes of the Poyang Lake floodplain, China. Fish. Manag. Ecol. 26, 131–140 (2019).

    Article  Google Scholar 

  • 60.

    Fang, C. et al. Fish resources in Poyang Lake and their utilization. Jiangsu Agric. Sci. 44, 233–243 (2016) (In Chinese).

    Google Scholar 

  • 61.

    Zhong, B. et al. Classification of Pelteobagrus fish in Poyang Lake based on mitochondrial COI gene sequence. Mitochondrial DNA A 27, 4635–4637 (2016).

    CAS  Article  Google Scholar 

  • 62.

    Xiong, G., Zhang, T., Lin, Y., Wang, W. & You, X. Analysis of some characters of fish in the inner Lake of Poyang Lake Wetland. Jiangxi Fish. Sci. Technol. 3, 10–12 (2018) (In Chinese).

    Google Scholar 

  • 63.

    Liu, X. et al. Biodiversity pattern of fish assemblages in Poyang Lake Basin: threat and conservation. Ecol. Evol. 9, 11672–11683 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Liu, M. et al. Species diversity of drifting fish eggs in the Yangtze River using molecular identification. PeerJ 6, e5807 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 65.

    Hinlo, R., Furlan, E., Suitor, L. & Gleeson, D. Environmental DNA monitoring and management of invasive fish: comparison of eDNA and fyke netting. Manag. Biol. Invasion 8, 89–100 (2017).

    Article  Google Scholar 

  • 66.

    Pilliod, D. S., Goldberg, C. S., Arkle, R. S. & Waits, L. P. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Can. J. Fish. Aquat. Sci. 70, 1123–1130 (2013).

    CAS  Article  Google Scholar 

  • 67.

    Lacoursière-Roussel, A., Côté, G., Leclerc, V. & Bernatchez, L. Quantifying relative fish abundance with eDNA: a promising tool for fisheries management. J. Appl. Ecol. 53, 1148–1157 (2016).

    Article  CAS  Google Scholar 

  • 68.

    Lacoursière-Roussel, A., Rosabal, M. & Bernatchez, L. Estimating fish abundance and biomass from eDNA concentrations: variability among capture methods and environmental conditions. Mol. Ecol. Resour. 16, 1401–1414 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 69.

    Ushio, M. et al. Quantitative monitoring of multispecies fish environmental DNA using high-throughput sequencing. Metabarcod. Metagenom. 2, 1–15 (2018).

    Google Scholar 

  • 70.

    Simmons, M., Tucker, A., Chadderton, W. L., Jerde, C. L. & Mahon, A. R. Active and passive environmental DNA surveillance of aquatic invasive species. Can. J. Fish. Aquat. Sci. 73, 76–83 (2016).

    CAS  Article  Google Scholar 

  • 71.

    Smart, A. S., Tingley, R., Weeks, A. R., vanRooyen, A. R. & McCarthy, M. A. Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader. Ecol. Appl. 25, 1944–1952 (2015).

    PubMed  Article  Google Scholar 

  • 72.

    Eiler, A., Löfgren, A., Hjerne, O., Nordén, S. & Saetre, P. Environmental DNA (eDNA) detects the pool frog (Pelophylax lessonae) at times when traditional monitoring methods are insensitive. Sci. Rep. 8, 5452 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 73.

    Lin, Y., Gao, Z. & Zhao, A. Introduction and use of non-native species for aquaculture in China: status, risks and management solutions. Rev. Aquacult. 7, 28–38 (2015).

    Article  Google Scholar 

  • 74.

    Xiong, et al. Non-native freshwater fish species in China. Rev. Fish. Biol. Fish. 25, 651–687 (2015).

    Article  Google Scholar 

  • 75.

    Pilliod, D. S., Goldberg, C. S., Arkle, R. S. & Waits, L. P. Factors influencing detection of eDNA from a stream-dwelling amphibian. Mol. Ecol. Resour. 14, 109–116 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 76.

    Eichmiller, J. J., Best, S. E. & Sorensen, P. W. Effects of temperature and trophic state on degradation of environmental DNA in lake water. Environ. Sci. Technol. 50, 1859–1867 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 77.

    Zou, K. et al. eDNA metabarcoding as a promising conservation tool for monitoring fish diversity in a coastal wetland of the Pearl River Estuary compared to bottom trawling. Sci. Total Environ. 702, 134704 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 78.

    Fernández, S., Rodríguez-Martínez, S., Martínez, J. L., Garcia-Vazquez, E. & Ardura, A. How can eDNA contribute in riverine macroinvertebrate assessment? A metabarcoding approach in the Nalón River (Asturias, Northern Spain). Environ. DNA 1, 385–401 (2019).

    Article  Google Scholar 

  • 79.

    Lacoursière-Roussel, A. et al. eDNA metabarcoding as a new surveillance approach for coastal Arctic biodiversity. Ecol. Evol. 8, 7763–7777 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 80.

    Liu, Y. et al. Application of environmental DNA metabarcoding to spatiotemporal finfish community assessment in a temperate embayment. Front. Mar. Sci. 6, 674 (2019).

    ADS  Article  Google Scholar 

  • 81.

    Xie, X. et al. Are river protected areas sufficient for fish conservation? Implications from large-scale hydroacoustic surveys in the middle reach of the Yangtze River. BMC Ecol. 19, 42 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 82.

    Xinhua. China starts 10-year fishing ban on Yangtze River.China Daily;https://www.chinadaily.com.cn/a/202001/02/WS5e0d4851a310cf3e35581f65.html(2020).

  • 83.

    Yang, S., Xu, K., Milliman, J. D. & Wu, C. Decline of Yangtze River water and sediment discharge: Impact from natural and anthropogenic changes. Sci. Rep. 5, 12581 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 


  • Source: Ecology - nature.com

    Acidobacteria are active and abundant members of diverse atmospheric H2-oxidizing communities detected in temperate soils

    Undergraduates ramp up research during pandemic diaspora