in

Competitive ability and plasticity of Wedelia trilobata (L.) under wetland hydrological variations

[adace-ad id="91168"]
  • 1.

    Martina, J. P., Currie, W. S., Goldberg, D. E. & Elgersma, K. J. Nitrogen loading leads to increased carbon accretion in both invaded and uninvaded coastal wetlands. Ecosphere. 7, e01459 (2016).

    Google Scholar 

  • 2.

    Wright, V. D., Hornbach, M. J., Mchugh, C. & Mann, P. Factors contributing to the 2005-present, rapid rise in lake levels, Dominican Republic and Haiti (Hispaniola). Nat Resour. 6, 465 (2015).

    Google Scholar 

  • 3.

    Wang, C.-h. & Li, B. Salinity and disturbance mediate direct and indirect plant–plant interactions in an assembled marsh community. Oecologia. 182, 139–152 (2016).

    ADS  PubMed  Google Scholar 

  • 4.

    Wersal, R. & Madsen, J. Comparative effects of water level variations on growth characteristics of Myriophyllum aquaticum. Weed Res. 51, 386–393 (2011).

    Google Scholar 

  • 5.

    Van Der Valk, A. G. Water-level fluctuations in North American prairie wetlands. Hydrobiologia. 539, 171–188 (2005).

    Google Scholar 

  • 6.

    Capers, R. S., Selsky, R., Bugbee, G. J. & White, J. C. Aquatic plant community invasibility and scale‐dependent patterns in native and invasive species richness. Ecology. 88, 3135–3143 (2007).

    PubMed  Google Scholar 

  • 7.

    Lorenzo, P., González, L. & Reigosa, M. J. The genus Acacia as invader: the characteristic case of Acacia dealbata Link in Europe. Ann Forest Sci. 67, 101 (2010).

    Google Scholar 

  • 8.

    Vila, M. & Weiner, J. Are invasive plant species better competitors than native plant species?-evidence from pair-wise experiments. Oikos. 105, 229–238 (2004).

    Google Scholar 

  • 9.

    Van Kleunen, M., Dawson, W., Schlaepfer, D., Jeschke, J. M. & Fischer, M. Are invaders different? A conceptual framework of comparative approaches for assessing determinants of invasiveness. Ecol Lett. 13, 947–958 (2010).

    PubMed  Google Scholar 

  • 10.

    Chen, L., Tiu, C. J., Peng, S. & Siemann, E. Conspecific plasticity and invasion: invasive populations of Chinese tallow (Triadica sebifera) have performance advantage over native populations only in low soil salinity. PLoS One. 8, e74961 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 11.

    Lankau, R. A. Species invasion alters local adaptation to soil communities in a native plant. Ecology. 94, 32–40 (2013).

    PubMed  Google Scholar 

  • 12.

    Strayer, D. L. Eight questions about invasions and ecosystem functioning. Ecol Lett. 15, 1199–1210 (2012).

    PubMed  Google Scholar 

  • 13.

    Wang, C., Liu, J., Xiao, H. & Zhou, J. Differences in leaf functional traits between Rhus typhina and native species. CLEAN–Soil, Air, Water. 44, 1591–1597 (2016).

    CAS  Google Scholar 

  • 14.

    Powell, K. I., Chase, J. M. & Knight, T. M. Invasive plants have scale-dependent effects on diversity by altering species-area relationships. Science. 339, 316–318 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 15.

    Catian, G., da Silva, D. M., Súarez, Y. R. & Scremin-Dias, E. Effects of flood pulse dynamics on functional diversity of macrophyte communities in the Pantanal Wetland. Wetlands. 38, 975–991 (2018).

    Google Scholar 

  • 16.

    Sheppard, C. S. & Burns, B. R. Effects of interspecific alien versus intraspecific native competition on growth of native woody plants. Plant Ecol. 215, 1527–1538 (2014).

    Google Scholar 

  • 17.

    Te Beest, M., Esler, K. J. & Richardson, D. M. Linking functional traits to impacts of invasive plant species: a case study. Plant Ecol. 216, 293–305 (2015).

    Google Scholar 

  • 18.

    Jo, I., Fridley, J. D. & Frank, D. A. Linking above-and belowground resource use strategies for native and invasive species of temperate deciduous forests. Biological Invasions. 17, 1545–1554 (2015).

    Google Scholar 

  • 19.

    Funk, J. L., Standish, R. J., Stock, W. D. & Valladares, F. Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems. Ecology. 97, 75–83 (2016).

    PubMed  Google Scholar 

  • 20.

    Liu, M. C. et al. Higher photosynthesis, nutrient-and energy-use efficiencies contribute to invasiveness of exotic plants in a nutrient poor habitat in northeast China. Physiol Plant. 160, 373–382 (2017).

    CAS  PubMed  Google Scholar 

  • 21.

    Ordonez, A. & Olff, H. Do alien plant species profit more from high resource supply than natives? A trait-based analysis. Global Ecol Biogeogr. 22, 648–658 (2013).

    Google Scholar 

  • 22.

    van Kleunen, M., Schlaepfer, D. R., Glaettli, M. & Fischer, M. Preadapted for invasiveness: do species traits or their plastic response to shading differ between invasive and non-invasive plant species in their native range? J Biogeogr. 38, 1294–1304 (2011).

    Google Scholar 

  • 23.

    Yu, H. et al. Influence of soil nutrient heterogeneity and competition on sprouting and ramets growth of Alternanthera philoxeroides. CLEAN–Soil, Air, Water. 47, 1800182 (2019).

    Google Scholar 

  • 24.

    Chen, Y., Zhou, Y., Yin, T.-F., Liu, C.-X. & Luo, F.-L. The invasive wetland plant Alternanthera philoxeroides shows a higher tolerance to waterlogging than its native congener Alternanthera sessilis. PLoS One. 8, e81456 (2013).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 25.

    Hussner, A., Meyer, C. & Busch, J. The influence of water level and nutrient availability on growth and root system development of Myriophyllum aquaticum. Weed Res. 49, 73–80 (2009).

    CAS  Google Scholar 

  • 26.

    Colmer, T. & Voesenek, L. Flooding tolerance: suites of plant traits in variable environments. Funct Plant Biol. 36, 665–681 (2009).

    Google Scholar 

  • 27.

    Panda, D., Sharma, S. G. & Sarkar, R. K. Chlorophyll fluorescence parameters, CO2 photosynthetic rate and regeneration capacity as a result of complete submergence and subsequent re-emergence in rice (Oryza sativa L.). Aquatic Bot. 88, 127–133 (2008).

    CAS  Google Scholar 

  • 28.

    Zhou, J. et al. Hydrological conditions affect the interspecific interaction between two emergent wetland species. Front Plant Sci. 8, 2253 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 29.

    Weber, E., Sun, S.-G. & Li, B. Invasive alien plants in China: diversity and ecological insights. Biological invasions. 10, 1411–1429 (2008).

    Google Scholar 

  • 30.

    Wang, R. et al. Effects of simulated acid rain on the allelopathic potential of invasive weed Wedelia trilobata. Allelopathy J. 30, 23–32 (2012).

    Google Scholar 

  • 31.

    Luque, G. M. et al. The 100th of the world’s worst invasive alien species. Biological invasions. 16, 981–985 (2014).

    Google Scholar 

  • 32.

    Qi, S.-S. et al. Light limitation and litter of an invasive clonal plant, Wedelia trilobata, inhibit its seedling recruitment. Ann Bot. 114, 425–433 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 33.

    Song, L., Chow, W. S., Sun, L., Li, C. & Peng, C. Acclimation of photosystem II to high temperature in two Wedelia species from different geographical origins: implications for biological invasions upon global warming. J Exp Bot. 61, 4087–4096 (2010).

    CAS  PubMed  Google Scholar 

  • 34.

    Talukdar, T. & Talukdar, D. Response of antioxidative enzymes to arsenic-induced phytotoxicity in leaves of a medicinal daisy, Wedelia chinensis Merrill. J Nat Sci Biol Medic. 4, 383 (2013).

    Google Scholar 

  • 35.

    Dai, Z.-C. et al. Different responses of an invasive clonal plant Wedelia trilobata and its native congener to gibberellin: implications for biological invasion. J Chem Ecol. 42, 85–94 (2016).

    CAS  PubMed  Google Scholar 

  • 36.

    Talukdar, T. & Mukherjee, S. K. Comparative study of cypselas in three common species of Asteraceae. Pleione. 2, 147–149 (2008).

    Google Scholar 

  • 37.

    Luo, F.-L. et al. De-submergence responses of antioxidative defense systems in two wetland plants having escape and quiescence strategies. J Plant physiol. 169, 1680–1689 (2012).

    CAS  PubMed  Google Scholar 

  • 38.

    Steffens, B., Steffen-Heins, A. & Sauter, M. Reactive oxygen species mediate growth and death in submerged plants. Front Plant Sci. 4, 179 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 39.

    Wang, P., Zhang, Q., Xu, Y.-S. & Yu, F.-H. Effects of water level fluctuation on the growth of submerged macrophyte communities. Flora. 223, 83–89 (2016).

    Google Scholar 

  • 40.

    Luo, F.-L., Jiang, X.-X., Li, H.-L. & Yu, F.-H. Does hydrological fluctuation alter impacts of species richness on biomass in wetland plant communities? J Plant Ecol. 9, 434–441 (2015).

    Google Scholar 

  • 41.

    Sun, Y., Ding, J. & Ren, M. Effects of simulated herbivory and resource availability on the invasive plant, Alternanthera philoxeroides in different habitats. Biological Control. 48, 287–293 (2009).

    Google Scholar 

  • 42.

    Wang, A. et al. Nitrogen addition increases intraspecific competition in the invasive wetland plant Alternanthera philoxeroides, but not in its native congener Alternanthera sessilis. Plant Spec Biol. 30, 176–183 (2015).

    Google Scholar 

  • 43.

    Zhang, H. et al. Effects of submergence and eutrophication on the morphological traits and biomass allocation of the invasive plant Alternanthera philoxeroides. J Freshwater Ecol. 31, 341–349 (2016).

    CAS  Google Scholar 

  • 44.

    Leishman, M. R., Haslehurst, T., Ares, A. & Baruch, Z. Leaf trait relationships of native and invasive plants: community‐and global‐scale comparisons. New Phytologist. 176, 635–643 (2007).

    CAS  PubMed  Google Scholar 

  • 45.

    Wang, Y.-J. et al. Effects of spatial patch arrangement and scale of covarying resources on growth and intraspecific competition of a clonal plant. Front Plant Sci. 7, 753 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 46.

    Zhou, J. et al. Does salt stress affect the interspecific interaction between regionally dominant Suaeda salsa and Scirpus planiculumis? PloS one. 12, e0177497 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 47.

    Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J. & Villar, R. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New phytologist. 182, 565–588 (2009).

    PubMed  Google Scholar 

  • 48.

    McIntyre, P. J. & Strauss, S. Y. Phenotypic and transgenerational plasticity promote local adaptation to sun and shade environments. Evol Ecol. 28, 229–246 (2014).

    Google Scholar 

  • 49.

    Van Kleunen, M., Weber, E. & Fischer, M. A meta-analysis of trait differences between invasive and non‐invasive plant species. Ecol Lett. 13, 235–245 (2010).

    PubMed  Google Scholar 

  • 50.

    Zheng, Y.-L., Feng, Y.-L., Liu, W.-X. & Liao, Z.-Y. Growth, biomass allocation, morphology, and photosynthesis of invasive Eupatoriumadenophorum and its native congeners grown at four irradiances. Plant Ecol. 203, 263–271 (2009).

    Google Scholar 

  • 51.

    Heberling, J. M. & Fridley, J. D. Resource-use strategies of native and invasive plants in Eastern North American forests. New Phytologist. 200, 523–533 (2013).

    CAS  PubMed  Google Scholar 

  • 52.

    Heberling, J. M. & Fridley, J. D. Invaders do not require high resource levels to maintain physiological advantages in a temperate deciduous forest. Ecology 97, 874–884 (2016).

  • 53.

    Ens, E., Hutley, L. B., Rossiter-Rachor, N. A., Douglas, M. M. & Setterfield, S. A. Resource-use efficiency explains grassy weed invasion in a low-resource savanna in north Australia. Front Plant Sci. 6, 560 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 54.

    Funk, J. L. & Vitousek, P. M. Resource-use efficiency and plant invasion in low-resource systems. Nature. 446, 1079 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 55.

    Feng, Y.-L., Fu, G.-L. & Zheng, Y.-L. Specific leaf area relates to the differences in leaf construction cost, photosynthesis, nitrogen allocation, and use efficiencies between invasive and noninvasive alien congeners. Planta. 228, 383–390 (2008).

    CAS  PubMed  Google Scholar 

  • 56.

    Sun, J. et al. Fluctuated water depth with high nutrient concentrations promote the invasiveness of Wedelia trilobata in Wetland. Ecol Evol 10, 832-842 (2019).

  • 57.

    Liu, G., Yang, Y.-B. & Zhu, Z.-H. Elevated nitrogen allows the weak invasive plant Galinsoga quadriradiata to become more vigorous with respect to inter-specific competition. Sci Rep-UK. 8, 3136 (2018).

    ADS  Google Scholar 

  • 58.

    Li, X. et al. Endophyte species influence the biomass production of the native grass Achnatherum sibiricum (L.) Keng under high nitrogen availability. Ecol Evol. 6, 8595–8606 (2016).

    PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Safely managed drinking water services in the Democratic People’s Republic of Korea: findings from the 2017 Multiple Indicator Cluster Survey

    Permo–Triassic boundary carbon and mercury cycling linked to terrestrial ecosystem collapse