in

Congruent geographic variation in saccular otolith shape across multiple species of African cichlids

[adace-ad id="91168"]
  • 1.

    Popper, A. N., Ramcharitar, J. & Campana, S. E. Why otoliths? Insights from inner ear physiology and fisheries biology. Mar. Freshw. Res. 56, 497–504. https://doi.org/10.1071/MF04267 (2005).

    Article  Google Scholar 

  • 2.

    Starrs, D., Ebner, B. C. & Fulton, C. J. All in the ears: Unlocking the early life history biology and spatial ecology of fishes. Biol. Rev. 91, 86–105. https://doi.org/10.1111/brv.12162 (2016).

    Article  PubMed  Google Scholar 

  • 3.

    Schulz-Mirbach, T., Ladich, F., Plath, M. & Heß, M. Enigmatic ear stones: what we know about the functional role and evolution of fish otoliths. Biol. Rev. https://doi.org/10.1111/brv.12463 (2018).

    Article  PubMed  Google Scholar 

  • 4.

    Campana, S. E. Photographic Atlas of Fish Otoliths of the Northwest Atlantic Ocean. Canadian Special Publication of Fisheries and Aquatic Sciences Vol. 133 (NRC Research Press, Ottawa, 2004).

    Google Scholar 

  • 5.

    Tuset, V. M., Lombarte, A., González, J. A., Pertusa, J. F. & Lorente, M. J. Comparative morphology of the sagittal otolith in Serranus spp. J. Fish Biol. 63, 1491–1504. https://doi.org/10.1111/j.1095-8649.2003.00262.x (2003).

    Article  Google Scholar 

  • 6.

    Tuset, V. M. et al. Otolith patterns of rockfishes from the northeastern pacific. J. Morphol. 276, 458–469. https://doi.org/10.1002/jmor.20353 (2015).

    Article  PubMed  Google Scholar 

  • 7.

    Campana, S. E. & Casselman, J. M. Stock discrimination using otolith shape analysis. Can. J. Fish. Aquat. Sci. 50, 1062–1083. https://doi.org/10.1139/f93-123 (1993).

    Article  Google Scholar 

  • 8.

    Bose, A. P. H., Adragna, J. B. & Balshine, S. Otolith morphology varies between populations, sexes and male alternative reproductive tactics in a vocal toadfish Porichthys notatus. J. Fish Biol. https://doi.org/10.1111/jfb.13187 (2016).

    Article  PubMed  Google Scholar 

  • 9.

    Mille, T., Mahe, K., Villanueva, M. C., De Pontual, H. & Ernande, B. Sagittal otolith morphogenesis asymmetry in marine fishes. J. Fish Biol. 87, 646–663. https://doi.org/10.1111/jfb.12746 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 10.

    Bose, A. P. H., Mccallum, E. S., Raymond, K., Marentette, J. R. & Balshine, S. Growth and otolith morphology vary with alternative reproductive tactics and contaminant exposure in the round goby Neogobius melanostomus. J. Fish Biol. 93, 674–684. https://doi.org/10.1111/jfb.13756 (2018).

    Article  PubMed  Google Scholar 

  • 11.

    Lombarte, A. & Castellón, A. Interspecific and intraspecific otolith variability in the genus Merluccius as determined by image analysis. Can. J. Zool. 69, 2442–2449. https://doi.org/10.1139/z91-343 (1991).

    Article  Google Scholar 

  • 12.

    Vignon, M. & Morat, F. Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish. Mar. Ecol. Prog. Ser. 411, 231–241. https://doi.org/10.3354/meps08651 (2010).

    ADS  Article  Google Scholar 

  • 13.

    Gagliano, M. & McCormick, M. I. Feeding history influences otolith shape in tropical fish. Mar. Ecol. Prog. Ser. 278, 291–296. https://doi.org/10.3354/meps278291 (2004).

    ADS  Article  Google Scholar 

  • 14.

    Hoff, G. R. & Fuiman, L. A. Morphometry and composition of red drum otoliths: Changes associated with temperature, somatic growth rate, and age. Comp. Biochem. Physiol. 106, 209–219. https://doi.org/10.1016/0300-9629(93)90502-U (1993).

    Article  Google Scholar 

  • 15.

    Tuset, V. M. et al. Otolith shape lends support to the sensory drive hypothesis in rockfishes. J. Evol. Biol. 29, 2083–2097. https://doi.org/10.1111/jeb.12932 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 16.

    Gauldie, R. W. Function, form and time-keeping properties of fish otoliths. Comp. Biochem. Physiol. 91, 395–402 (1988).

    Article  Google Scholar 

  • 17.

    Popper, A. N., Fay, R. R., Platt, C. & Sand, O. Sound detection mechanisms and capabilities of teleost fishes. In Sensory Processing in Aquatic Environments (eds Collin, S. P. & Marshall, N. J.) 3–38 (Springer-Verlag, New York, 2003).

    Google Scholar 

  • 18.

    Krysl, P., Hawkins, A. D., Schilt, C. & Cranford, T. W. Angular oscillation of solid scatterers in response to progressive planar acoustic waves: Do fish otoliths rock?. PLoS ONE https://doi.org/10.1371/journal.pone.0042591 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • 19.

    Duftner, N. et al. Distinct population structure in a phenotypically homogeneous rock-dwelling cichlid fish from Lake Tanganyika. Mol. Ecol. 15, 2381–2395. https://doi.org/10.1111/j.1365-294X.2006.02949.x (2006).

    CAS  Article  PubMed  Google Scholar 

  • 20.

    Koblmüller, S., Sefc, K. M., Duftner, N., Warum, M. & Sturmbauer, C. Genetic population structure as indirect measure of dispersal ability in a Lake Tanganyika cichlid. Genetica 130, 121–131. https://doi.org/10.1007/s10709-006-0027-0 (2007).

    Article  PubMed  Google Scholar 

  • 21.

    Sefc, K. M., Baric, S., Salzburger, W. & Sturmbauer, C. Species-specific population structure in rock-specialized sympatric cichlid species in Lake Tanganyika. East Afr. J. Mol. Evol. 64, 33–49. https://doi.org/10.1007/s00239-006-0011-4 (2007).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Wagner, C. E. & McCune, A. R. Contrasting patterns of spatial genetic structure in sympatric rock-dwelling cichlid fishes. Evolution 63, 1312–1326. https://doi.org/10.1111/j.1558-5646.2009.00612.x (2009).

    Article  PubMed  Google Scholar 

  • 23.

    Sefc, K. M. et al. Shifting barriers and phenotypic diversification by hybridisation. Ecol. Lett. 20, 651–662. https://doi.org/10.1111/ele.12766 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Koblmüller, S. et al. Separated by sand, fused by dropping water: Habitat barriers and fluctuating water levels steer the evolution of rock-dwelling cichlid populations in Lake Tanganyika. Mol. Ecol. 20, 2272–2290. https://doi.org/10.1111/j.1365-294X.2011.05088.x (2011).

    Article  PubMed  Google Scholar 

  • 25.

    Kohda, M. et al. Geographical colour variation in cichlid fishes at the southern end of Lake Tanganyika. Environ. Biol. Fishes 45, 237–248. https://doi.org/10.1007/BF00003091 (1996).

    Article  Google Scholar 

  • 26.

    Widmer, L. et al. Point-Combination Transect (PCT): Incorporation of small underwater cameras to study fish communities. Methods Ecol. Evol. 10, 891–901. https://doi.org/10.1111/2041-210X.13163 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 27.

    McGlue, M. M. et al. Seismic records of late Pleistocene aridity in Lake Tanganyika, tropical East Africa. J. Paleolimnol. 40, 635–653. https://doi.org/10.1007/s10933-007-9187-x (2008).

    ADS  Article  Google Scholar 

  • 28.

    Duftner, N. et al. Parallel evolution of facial stripe patterns in the Neolamprologus brichardi/pulcher species complex endemic to Lake Tanganyika. Mol. Phylogenet. Evol. 45, 706–715. https://doi.org/10.1016/j.ympev.2007.08.001 (2007).

    Article  PubMed  Google Scholar 

  • 29.

    Sefc, K. M., Mattersdorfer, K., Hermann, C. M. & Koblmüller, S. Past lake shore dynamics explain present pattern of unidirectional introgression across a habitat barrier. Hydrobiologia 791, 69–82. https://doi.org/10.1007/s10750-016-2791-x (2017).

    Article  Google Scholar 

  • 30.

    Winkelmann, K., Rüber, L. & Genner, M. J. Lake level fluctuations and divergence of cichlid fish ecomorphs in Lake Tanganyika. Hydrobiologia 791, 21–34. https://doi.org/10.1007/s10750-016-2839-y (2017).

    Article  Google Scholar 

  • 31.

    Koblmüller, S. et al. Phylogeny and phylogeography of Altolamprologus: Ancient introgression and recent divergence in a rock-dwelling Lake Tanganyika cichlid genus. Hydrobiologia 791, 35–50. https://doi.org/10.1007/s10750-016-2896-2 (2017).

    CAS  Article  Google Scholar 

  • 32.

    Balshine, S. et al. Correlates of group size in a cooperatively breeding cichlid fish (Neolamprologus pulcher). Behav. Ecol. Sociobiol. 50, 134–140. https://doi.org/10.1007/s002650100343 (2001).

    Article  Google Scholar 

  • 33.

    Heg, D., Bachar, Z. & Taborsky, M. Cooperative breeding and group structure in the Lake Tanganyika cichlid Neolamprologus savoryi. Ethology 111, 1017–1043. https://doi.org/10.1111/j.1439-0310.2005.01135.x (2005).

    Article  Google Scholar 

  • 34.

    Bose, A. P. H., Zimmermann, H., Henshaw, J. M., Fritzsche, K. & Sefc, K. M. Brood—tending males in a biparental fish suffer high paternity losses but rarely cuckold. Mol. Ecol. 27, 4309–4321. https://doi.org/10.1111/mec.14857 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 35.

    Schaedelin, F. C., Van Dongen, W. F. D. & Wagner, R. H. Mate choice and genetic monogamy in a biparental, colonial fish. Behav. Ecol. 26, 782–788. https://doi.org/10.1093/beheco/arv011 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 36.

    Konings, A. Tanganyika Cichlids in Their Natural Habitat 4th edn. (Hollywood Import & Export Inc., Gainesville, 2019).

    Google Scholar 

  • 37.

    Ota, K., Hori, M. & Kohda, M. Testes investment along a vertical depth gradient in an herbivorous fish. Ethology 118, 683–693. https://doi.org/10.1111/j.1439-0310.2012.02056.x (2012).

    Article  Google Scholar 

  • 38.

    Sturmbauer, C. et al. Abundance, distribution, and territory areas of rock-dwelling Lake Tanganyika cichlid fish species. Hydrobiologia 615, 57–68. https://doi.org/10.1007/978-1-4020-9582-5_5 (2008).

    Article  Google Scholar 

  • 39.

    Heg, D., Brouwer, L., Bachar, Z. & Taborsky, M. Large group size yields group stability in the cooperatively breeding cichlid Neolamprologus pulcher. Behaviour 1, 1–27. https://doi.org/10.1163/156853905774831891 (2005).

    Article  Google Scholar 

  • 40.

    Spinks, R. K., Muschick, M., Salzburger, W. & Gante, H. F. Singing above the chorus: Cooperative Princess cichlid fish (Neolamprologus pulcher) has high pitch. Hydrobiologia 791, 115–125. https://doi.org/10.1007/s10750-016-2921-5 (2016).

    Article  Google Scholar 

  • 41.

    Bigirimana, C. Neolamprologus pulcher. The IUCN Red List of Threatened Species 2006: e.T60604A12382292. https://doi.org/10.2305/IUCN.UK.2006.RLTS.T60604A12382292.en (2006). Accessed 8 March 2020.

  • 42.

    Bigirimana, C. Neolamprologus caudopunctatus. The IUCN Red List of Threatened Species 2006: e.T60591A12373751. https://doi.org/10.2305/IUCN.UK.2006.RLTS.T60591A12373751.en (2006). Accessed 8 March 2020.

  • 43.

    Bigirimana, C. Neolamprologus savoryi. The IUCN Red List of Threatened Species 2006: e.T60605A12382585. https://doi.org/10.2305/IUCN.UK.2006.RLTS.T60605A12382585.en (2006). Accessed 8 March 2020.

  • 44.

    Bigirimana, C. Neolamprologus moorii. The IUCN Red List of Threatened Species 2006: e.T60613A12384127. https://doi.org/10.2305/IUCN.UK.2006.RLTS.T60613A12384127.en (2006). Accessed 8 March 2020.

  • 45.

    Iwata, H. & Ukai, Y. SHAPE: A computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. J. Hered. 93, 384–385. https://doi.org/10.1093/jhered/93.5.384 (2002).

    CAS  Article  PubMed  Google Scholar 

  • 46.

    Crampton, J. S. Elliptic Fourier shape analysis of fossil bivalves: Some practical considerations. Lethaia 28, 179–186. https://doi.org/10.1111/j.1502-3931.1995.tb01611.x (1995).

    Article  Google Scholar 

  • 47.

    Jackson, D. A. Stopping rules in principal component analysis: A comparison of heuristical and statistical approaches. Ecology 74, 2204–2214. https://doi.org/10.2307/1939574 (1993).

    Article  Google Scholar 

  • 48.

    Bolles, K. L. & Begg, G. A. Distinction between silver hake (Merluccius bilinearis) stocks in US waters of the northwest Atlantic based on whole otolith morphometrics. Fish. Bull. 98, 451–462 (2000).

    Google Scholar 

  • 49.

    Lenth, R. emmeans: Estimated marginal means, aka least-squares means. R package version 1.4.4. https://CRAN.R-project.org/package=emmeans (2020).

  • 50.

    Richlen, M. L. & Barber, P. H. A technique for the rapid extraction of microalgal DNA from single live and preserved cells. Mol. Ecol. Notes 5, 688–691. https://doi.org/10.1111/j.1471-8286.2005.01032.x (2005).

    CAS  Article  Google Scholar 

  • 51.

    McCusker, M. R. & Bentzen, P. Positive relationships between genetic diversity and abundance in fishes. Mol. Ecol. 19, 4852–4862. https://doi.org/10.1111/j.1365-294X.2010.04822.x (2010).

    Article  PubMed  Google Scholar 

  • 52.

    Karl, S. A., Toonen, R. J., Grant, W. S. & Bowen, B. W. Common misconceptions in molecular ecology: Echoes of the modern synthesis. Mol. Ecol. 21, 4171–4189. https://doi.org/10.1111/j.1365-294X.2012.05576.x (2012).

    CAS  Article  PubMed  Google Scholar 

  • 53.

    Excoffier, L., Laval, G. & Schneider, S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinform. Online 1, 47–50. https://doi.org/10.1177/117693430500100003 (2005).

    CAS  Article  Google Scholar 

  • 54.

    Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 497–591 (1992).

    Google Scholar 

  • 55.

    Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116. https://doi.org/10.1111/2041-210X.12410 (2015).

    Article  Google Scholar 

  • 56.

    Templeton, A. R., Crandall, K. A. & Sing, C. F. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132, 619–633 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 57.

    Sefc, K. M., Payne, R. B. & Sorenson, M. D. Genetic differentiation after founder events: An evaluation of FST estimators with empirical and simulated data. Evol. Ecol. Res. 9, 21–39 (2007).

    Google Scholar 

  • 58.

    Sturmbauer, C., Salzburger, W., Duftner, N., Schelly, R. & Koblmüller, S. Evolutionary history of the Lake Tanganyika cichlid tribe Lamprologini (Teleostei: Perciformes) derived from mitochondrial and nuclear DNA data. Mol. Phylogenet. Evol. 57, 266–284 (2010).

    CAS  Article  Google Scholar 

  • 59.

    Chung, Y., Rabe-Hesketh, S., Dorie, V., Gelman, A. & Liu, J. A nondegenerate penalized likelihood estimator for variance parameters in multilevel models. Psychometrika 78, 685–709. https://doi.org/10.1007/s11336-013-9328-2 (2013).

    MathSciNet  Article  PubMed  MATH  Google Scholar 

  • 60.

    Solt, F. & Hu, Y. dotwhisker: Dot-and-whisker plots of regression results. R package version 0.5.0. https://CRAN.R-project.org/package=dotwhisker (2018).

  • 61.

    Wilson, R. R. Jr. Depth-related changes in sagitta morphology in six Macrourid fishes of the Pacific and Atlantic Oceans. Copeia 4, 1011–1017. https://doi.org/10.2307/1445256 (1985).

    Article  Google Scholar 

  • 62.

    Lombarte, A. & Lleonart, J. Otolith size changes related with body growth, habitat depth and temperature. Environ. Biol. Fishes 37, 297–306. https://doi.org/10.1007/BF00004637 (1993).

    Article  Google Scholar 

  • 63.

    Mérigot, B., Letourneur, Y. & Lecomte-Finiger, R. Characterization of local populations of the common sole Solea solea (Pisces, Soleidae) in the NW Mediterranean through otolith morphometrics and shape analysis. Mar. Biol. 151, 997–1008. https://doi.org/10.1007/s00227-006-0549-0 (2007).

    Article  Google Scholar 

  • 64.

    Hüssy, K. Otolith shape in juvenile cod (Gadus morhua): Ontogenetic and environmental effects. J. Exp. Mar. Bio. Ecol. 364, 35–41. https://doi.org/10.1016/j.jembe.2008.06.026 (2008).

    Article  Google Scholar 

  • 65.

    Volpedo, A. V. & Fuchs, D. V. Ecomorphological patterns of the lapilli of Paranoplatense Siluriforms (South America). Fish. Res. 102, 160–165. https://doi.org/10.1016/j.fishres.2009.11.007 (2010).

    Article  Google Scholar 

  • 66.

    Vignon, M. Disentangling and quantifying sources of otolith shape variation across multiple scales using a new hierarchical partitioning approach. Mar. Ecol. Prog. Ser. 534, 163–177. https://doi.org/10.3354/meps11376 (2015).

    ADS  Article  Google Scholar 

  • 67.

    Sand, O. & Michelsen, A. Vibration measurements of the perch saccular otolith. J. Comp. Physiol. A 123, 85–89. https://doi.org/10.1007/BF00657346 (1978).

    Article  Google Scholar 

  • 68.

    Schulz-Mirbach, T. et al. In-situ visualization of sound-induced otolith motion using hard X-ray phase contrast imaging. Sci. Rep. 8, 1–12. https://doi.org/10.1038/s41598-018-21367-0 (2018).

    CAS  Article  Google Scholar 

  • 69.

    Castonguay, M., Simard, P. & Gagnon, P. Usefulness of Fourier analysis of otolith shape for Atlantic mackerel (Scomber scombrus) stock discrimination. Can. J. Biochem. Physiol. 48, 296–302. https://doi.org/10.1139/f91-041 (1991).

    Article  Google Scholar 

  • 70.

    Friedland, K. D. & Reddin, D. G. Use of otolith morphology in stock discriminations of Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 51, 91–98. https://doi.org/10.1139/f94-011 (1994).

    Article  Google Scholar 

  • 71.

    Turan, C. Otolith shape and meristic analysis of herring (Clupea harengus) in the North-East Atlantic. Arch. Fish. Mar. Res. 48, 283–295 (2000).

    Google Scholar 

  • 72.

    Reichenbacher, B., Feulner, G. R. & Schulz-Mirbach, T. Geographic variation in otolith morphology among freshwater populations of Aphanius dispar (Teleostei, Cyprinodontiformes) from the southeastern Arabian Peninsula. J. Morphol. 484, 469–484. https://doi.org/10.1002/jmor.10702 (2009).

    Article  Google Scholar 

  • 73.

    Libungan, L. A., Slotte, A., Huseb, Å & Godiksen, J. A. Latitudinal gradient in otolith shape among local populations of Atlantic herring (Clupea harengus L.) in Norway. PLoS ONE 10, e0130847. https://doi.org/10.1371/journal.pone.0130847 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 74.

    Hedrick, P. W. Sex: Differences in mutation, recombination, selection, gene flow, and genetic drift. Evolution 61, 2750–2771. https://doi.org/10.1111/j.1558-5646.2007.00250.x (2007).

    Article  PubMed  Google Scholar 

  • 75.

    Cardinale, M., Doering-Arjes, P., Kastowsky, M. & Mosegaard, H. Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Can. J. Fish. Aquat. Sci. 61, 158–167. https://doi.org/10.1139/f03-151 (2004).

    Article  Google Scholar 

  • 76.

    Parmentier, E., Boistel, R., Bahri, M. A., Plenevaux, A. & Schwarzhans, W. Sexual dimorphism in the sonic system and otolith morphology of Neobythites gilli (Ophidiiformes). J. Morphol. 4, 1–7. https://doi.org/10.1111/jzo.12561 (2018).

    Article  Google Scholar 

  • 77.

    Sopinka, N. M. et al. Liver size reveals social status in the African cichlid Neolamprologus pulcher. J. Fish Biol. 75, 1–16. https://doi.org/10.1111/j.1095-8649.2009.02234.x (2009).

    CAS  Article  PubMed  Google Scholar 

  • 78.

    Irisarri, I. et al. Phylogenomics uncovers early hybridization and adaptive loci shaping the radiation of Lake Tanganyika cichlid fishes. Nat. Commun. 9, 1–12. https://doi.org/10.1038/s41467-018-05479-9 (2018).

    CAS  Article  Google Scholar 

  • 79.

    Breheny, P. & Burchett, W. Visualization of regression models using visreg. R. J. 9, 56–71 (2017).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Study: A plunge in incoming sunlight may have triggered “Snowball Earths”

    A comparison of baleen whale density estimates derived from overlapping satellite imagery and a shipborne survey