in

Consistency in mutualism relies on local, rather than wider community biodiversity

  • 1.

    Bronstein, J., Dieckmann, U. & Ferrière, R. In Evolutionary Conservation Biology (eds Ferrière, R., Dieckmann, U., & Couvet, D.) (Cambridge University Press, 2004).

  • 2.

    Bronstein, J. L. Mutualism (Oxford University Press, Oxford, 2015).

    Google Scholar 

  • 3.

    Herrera, C. M. Variation in mutualisms: the spatiotemporal mosaic of a pollinator assemblage. Biol. J. Linn. Soc. 35, 95–125 (1988).

    Article  Google Scholar 

  • 4.

    Billick, I. & Tonkel, K. The relative importance of spatial vs. temporal variability in generating a conditional mutualism. Ecology 84, 289–295. https://doi.org/10.1890/0012-9658(2003)084[0289:Triosv]2.0.Co;2 (2003).

    Article  Google Scholar 

  • 5.

    Hoeksema, J. & Bruna, E. In Mutualism (ed Bronstein, J. L.) 181–202 (Oxford University Press, 2015).

  • 6.

    Chamberlain, S. A., Bronstein, J. L. & Rudgers, J. A. How context dependent are species interactions?. Ecol. Lett. 17, 881–890 (2014).

    Article  Google Scholar 

  • 7.

    Hoeksema, J. D. et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Lett. 13, 394–407 (2010).

    Article  Google Scholar 

  • 8.

    Chomicki, G., Weber, M., Antonelli, A., Bascompte, J. & Kiers, E. T. The impact of mutualisms on species richness. Trends. Ecol. Evol. 34, 698–711 (2019).

    Article  Google Scholar 

  • 9.

    Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Holland, J. N., Ness, J. H., Boyle, A. & Bronstein, J. L. In Ecology of Predator–Prey Interactions (eds Barbosa, P. & Castellanos, I.) 17–33 (Oxford University Press, 2005).

  • 11.

    Landry, C. Mighty Mutualisms: the nature of plant-pollinator interactions. Nat. Educ. Knowl. 3, 37 (2012).

    Google Scholar 

  • 12.

    Arnal, C., Côté, I. M. & Morand, S. Why clean and be cleaned? The importance of client ectoparasites and mucus in a marine cleaning symbiosis. Behav. Ecol. Sociobiol. 51, 1–7. https://doi.org/10.1007/s002650100407 (2001).

    Article  Google Scholar 

  • 13.

    Breton, L. M. & Addicott, J. F. Density-dependent mutualism in an aphid-ant interaction. Ecology 73, 2175–2180 (1992).

    Article  Google Scholar 

  • 14.

    Sazima, C., Guimarães, P. R., Dos Reis, S. F. & Sazima, I. What makes a species central in a cleaning mutualism network?. Oikos 119, 1319–1325. https://doi.org/10.1111/j.1600-0706.2009.18222.x (2010).

    Article  Google Scholar 

  • 15.

    Noë, R. In Economics in Nature: Social Dilemmas, Mate Choice and Biological Markets (eds Noë, R. & Hammerstein, P.) 93–118 (Cambridge University Press, 2001).

  • 16.

    Palmer, T., Pringle, E., Stier, A. & Holt, R. In Mutualism Vol. 159 (ed Bronstein, J. L.) 159–180 (Oxford University Press, 2015).

  • 17.

    Bronstein, J. L. Our current understanding of mutualism. Q. Rev. Biol. 69, 31–51. https://doi.org/10.1086/418432 (1994).

    Article  Google Scholar 

  • 18.

    Dunkley, K., Ioannou, C. C., Whittey, K. E., Cable, J. & Perkins, S. E. Cleaner personality and client identity have joint consequences on cleaning interaction dynamics. Behav. Ecol. 30, 703–712. https://doi.org/10.1093/beheco/arz007 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 19.

    Feder, H. M. Cleaning symbiosis in the marine environment. Symbiosis 1, 327–380 (1966).

    Google Scholar 

  • 20.

    Dunkley, K. et al. Long-term cleaning patterns of the sharknose goby (Elacatinus evelynae). Coral Reefs 38, 1–10 (2019).

    Article  Google Scholar 

  • 21.

    Floeter, S. R., Vazquez, D. P. & Grutter, A. S. The macroecology of marine cleaning mutualisms. J. Anim. Ecol. 76, 105–111. https://doi.org/10.1111/j.1365-2656.2006.01178.x (2007).

    Article  PubMed  Google Scholar 

  • 22.

    Whiteman, E. A. & Côté, I. M. Cleaning activity of two Caribbean cleaning gobies: intra- and interspecific comparisons. J. Fish Biol. 60, 1443–1458. https://doi.org/10.1006/jfbi.2002.1947 (2002).

    Article  Google Scholar 

  • 23.

    Côté, I. M., Arnal, C. & Reynolds, J. D. Variation in posing behaviour among fish species visiting cleaning stations. J. Fish Biol. 53, 256–266. https://doi.org/10.1111/j.1095-8649.1998.tb01031.x (1998).

    Article  Google Scholar 

  • 24.

    Bshary, R. & Schäffer, D. Choosy reef fish select cleaner fish that provide high-quality service. Anim. Behav. 63, 557–564. https://doi.org/10.1006/anbe.2001.1923 (2002).

    Article  Google Scholar 

  • 25.

    Axelrod, R. & Hamilton, W. D. The evolution of cooperation. Science 211, 1390–1396 (1981).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  • 26.

    Bronstein, J. L. The exploitation of mutualisms. Ecol. Lett. 4, 277–287 (2001).

    Article  Google Scholar 

  • 27.

    Eckes, M., Dove, S., Siebeck, U. E. & Grutter, A. S. Fish mucus versus parasitic gnathiid isopods as sources of energy and sunscreens for a cleaner fish. Coral Reefs 34, 823–833. https://doi.org/10.1007/s00338-015-1313-z (2015).

    ADS  Article  Google Scholar 

  • 28.

    Gonzalez-Teuber, M. & Heil, M. The role of extrafloral nectar amino acids for the preferences of facultative and obligate ant mutualists. J. Chem. Ecol. 35, 459–468. https://doi.org/10.1007/s10886-009-9618-4 (2009).

    CAS  Article  PubMed  Google Scholar 

  • 29.

    Grutter, A. S. Spatial and temporal variations of the ectoparasites of seven reef fish species from Lizard Island and Heron Island, Australia. Mar. Ecol. Prog. Ser. 115, 21–30 (1994).

    ADS  Article  Google Scholar 

  • 30.

    Poulin, R. & Rohde, K. Comparing the richness of metazoan ectoparasite communities of marine fishes: controlling for host phylogeny. Oecologia 110, 278–283. https://doi.org/10.1007/s004420050160 (1997).

    ADS  Article  PubMed  Google Scholar 

  • 31.

    Patterson, J. E. & Ruckstuhl, K. E. Parasite infection and host group size: a meta-analytical review. Parasitology 140, 803–813. https://doi.org/10.1017/S0031182012002259 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 32.

    Bronstein, J. L. & Barbosa, P. In Multitrophic level interactions (eds Tscharntke, T. & Hawkins, B. A.) 44–65 (Cambridge University Press, 2002).

  • 33.

    Hoeksema, J. D. & Bruna, E. M. Pursuing the big questions about interspecific mutualism: a review of theoretical approaches. Oecologia 125, 321–330. https://doi.org/10.1007/s004420000496 (2000).

    ADS  Article  PubMed  Google Scholar 

  • 34.

    Waser, N. M., Chittka, L., Price, M. V., Williams, N. M. & Ollerton, J. Generalization in pollination systems, and why it matters. Ecology 77, 1043–1060 (1996).

    Article  Google Scholar 

  • 35.

    Arnal, C., Côté, I. M., Sasal, P. & Morand, S. Cleaner-client interactions on a Caribbean reef: influence of correlates of parasitism. Behav. Ecol. Sociobiol. 47, 353–358. https://doi.org/10.1007/s002650050676 (2000).

    Article  Google Scholar 

  • 36.

    Wilson, A. D. M., Krause, J., Herbert-Read, J. E. & Ward, A. J. W. The personality behind cheating: behavioural types and the feeding ecology of cleaner fish. Ethology 120, 904–912. https://doi.org/10.1111/eth.12262 (2014).

    Article  Google Scholar 

  • 37.

    Dunkley, K., Cable, J. & Perkins, S. E. The selective cleaning behaviour of juvenile blue-headed wrasse (Thalassoma bifasciatum) in the Caribbean. Behav. Process. 147, 5–12. https://doi.org/10.1016/j.beproc.2017.12.005 (2018).

    Article  Google Scholar 

  • 38.

    Triki, Z. et al. Biological market effects predict cleaner fish strategic sophistication. Behav. Ecol. 30, 1548–1557 (2019).

    Article  Google Scholar 

  • 39.

    Cheney, K. L. & Côté, I. M. Do ectoparasites determine cleaner fish abundance? Evidence on two spatial scales. Mar. Ecol. Prog. Ser. 263, 189–196 (2003).

    ADS  Article  Google Scholar 

  • 40.

    Lo, C. M., Morand, S. & Galzin, R. Parasite diversityhost age and size relationship in three coral-reef fishes from French Polynesia. Int. J. Parasitol. 28, 1695–1708 (1998).

    CAS  Article  Google Scholar 

  • 41.

    Palmer, T. M. et al. Breakdown of an ant-plant mutualism follows the loss of large herbivores from an African savanna. Science 319, 192–195. https://doi.org/10.1126/science.1151579 (2008).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 42.

    Toby, K. E., Palmer, T. M., Ives, A. R., Bruno, J. F. & Bronstein, J. L. Mutualisms in a changing world: an evolutionary perspective. Ecol. Lett. 13, 1459–1474. https://doi.org/10.1111/j.1461-0248.2010.01538.x (2010).

    Article  Google Scholar 

  • 43.

    Chomicki, G. & Renner, S. S. Partner abundance controls mutualism stability and the pace of morphological change over geologic time. Proc. Natl. Acad. Sci. USA 114, 3951–3956. https://doi.org/10.1073/pnas.1616837114 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 44.

    Werner, E. E. Individual behavior and higher-order species interactions. Am. Nat. 140, S5–S32. https://doi.org/10.1086/285395 (1992).

    Article  Google Scholar 

  • 45.

    Chamberlain, S. A. & Holland, J. N. Quantitative synthesis of context dependency in ant–plant protection mutualisms. Ecology 90, 2384–2392 (2009).

    Article  Google Scholar 

  • 46.

    Bartomeus, I. Understanding linkage rules in plant-pollinator networks by using hierarchical models that incorporate pollinator detectability and plant traits. PLoS ONE 8, e69200 (2013).

    ADS  CAS  Article  Google Scholar 

  • 47.

    Heath, K. D. & Stinchcombe, J. R. Explaining mutualism variation: a new evolutionary paradox?. Evolution 68, 309–317 (2014).

    Article  Google Scholar 

  • 48.

    Lester, R. J. & McVinish, R. Does moving up a food chain increase aggregation in parasites?. J. R. Soc. Interface 13, 20160102. https://doi.org/10.1098/rsif.2016.0102 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 49.

    Blanchet, S., Rey, O. & Loot, G. Evidence for host variation in parasite tolerance in a wild fish population. Evol. Ecol. 24, 1129–1139 (2010).

    Article  Google Scholar 

  • 50.

    Rohde, K., Hayward, C. & Heap, M. Aspects of the ecology of metazoan ectoparasites of marine fishes. Int. J. Parasitol. 25, 945–970 (1995).

    CAS  Article  Google Scholar 

  • 51.

    Toscano, B. J., Gownaris, N. J., Heerhartz, S. M. & Monaco, C. J. Personality, foraging behavior and specialization: integrating behavioral and food web ecology at the individual level. Oecologia 182, 55–69. https://doi.org/10.1007/s00442-016-3648-8 (2016).

    ADS  Article  PubMed  Google Scholar 

  • 52.

    Batstone, R. T., Carscadden, K. A., Afkhami, M. E. & Frederickson, M. E. Using niche breadth theory to explain generalization in mutualisms. Ecology 99, 1039–1050 (2018).

    Article  Google Scholar 

  • 53.

    White, J. W., Grigsby, C. J. & Warner, R. R. Cleaning behavior is riskier and less profitable than an alternative strategy for a facultative cleaner fish. Coral Reefs 26, 87–94. https://doi.org/10.1007/s00338-006-0161-2 (2007).

    Article  Google Scholar 

  • 54.

    Barker, J. L. & Bronstein, J. L. Temporal structure in cooperative interactions: what does the timing of exploitation tell us about its cost?. PLoS Biol. 14, e1002371 (2016).

    Article  Google Scholar 

  • 55.

    Vannette, R. L., Gauthier, M.-P.L. & Fukami, T. Nectar bacteria, but not yeast, weaken a plant–pollinator mutualism. Proc. R. Soc. B 280, 20122601 (2013).

    Article  Google Scholar 

  • 56.

    Strauss, S. Y. Floral characters link herbivores, pollinators, and plant fitness. Ecology 78, 1640–1645 (1997).

    Article  Google Scholar 

  • 57.

    Heath, K. D. & Lau, J. A. Herbivores alter the fitness benefits of a plant–rhizobium mutualism. Acta Oecol. 37, 87–92 (2011).

    ADS  Article  Google Scholar 

  • 58.

    Ferrari, R. et al. Habitat structural complexity metrics improve predictions of fish abundance and distribution. Ecography 41, 1077–1091 (2018).

    Article  Google Scholar 

  • 59.

    Ferreira, C. E., Goncçalves, J. E. & Coutinho, R. Community structure of fishes and habitat complexity on a tropical rocky shore. Environ. Biol. Fish 61, 353–369 (2001).

    Article  Google Scholar 

  • 60.

    Humann, P. & Deloach, N. Reef Fish Identification (New World Publications, Jacksonville, 2014).

    Google Scholar 

  • 61.

    Froese, R. & Pauly, D. FishBase. www.fishbase.org (2018).

  • 62.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.8637/jss.v067.i01 (2015).

    Article  Google Scholar 

  • 63.

    R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org (2017).

  • 64.

    Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).

    Article  Google Scholar 

  • 65.

    Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends. Ecol. Evol. 24, 127–135. https://doi.org/10.1016/j.tree.2008.10.008 (2009).

    Article  PubMed  Google Scholar 

  • 66.

    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, Berlin, 2009).

    Google Scholar 


  • Source: Ecology - nature.com

    Resistance to insecticides and synergism by enzyme inhibitors in Aedes albopictus from Punjab, Pakistan

    Gene expression in diapausing rotifer eggs in response to divergent environmental predictability regimes