Murphy, E. J. et al. Spatial and temporal operation of the Scotia Sea ecosystem: a review of large-scale links in a krill centred food web. Philos. T. Roy. Soc. B 362, 113–148 (2007a).
Atkinson, A., Schmidt, K., Fielding, S., Kawaguchi, S. & Geissler, P. A. Variable food absorption by Antarctic krill: relationships between diet, egestion rate and the composition and sinking rates of their faecal pellets. Deep-Sea Res. PT II 59–60, 147–158 (2012).
Le Fèvrea, J., Legendre, L. & Rivkinc, R. B. Fluxes of biogenic carbon in the Southern Ocean: roles of large microphagous zooplankton. J. Mar. Syst. 17, 325–345 (1998).
Lehette, P., Tovar-Sánchez, A., Duarte, C. M. & Hernández-León, S. Krill excretion and its effect on primary production. Mar. Ecol. Prog. Ser. 459, 29–38 (2012).
Steinberg, K. D. et al. Long-term (1993–2013) changes in macrozooplankton off the Western Antarctic Peninsula. Deep-Sea Res. PT I 101, 54–70 (2015).
Accornero, A., Manno, C., Esposito, F. & Gambi, M. The vertical flux of particulate matter in the polynya of Terra Nova Bay. Part II. Biological components. Antarct. Sci. 15, 175–188 (2003).
Dunbar, R. B., Leventer, A. R. & Mucciarone, D. A. Water column sediment fluxes in the Ross Sea, Antarctica: atmospheric and sea-iceforcing. J. Geophys. Res. 1093, 741–760 (1998).
Bathmann, U., Fisher, G., Muller, P. J. & Gerdes, D. Short-term variations in particulate matter sedimentation off Kapp Norvegia,Weddell Sea, Antarctica: relation to water mass advection, ice cover, plankton biomass and feeding activity. Polar Biol. 11, 185–195 (1991).
Cadée, G. C., González, H. & Schnack-Schiel, S. B. Krill diet affects faecal string settling. Polar Biol. 12, 75–80 (1992).
Manno, C., Stowasser, G., Enderlein, P., Fielding, S. & Tarling, G. A. The contribution of zooplankton faecal pellets to deep carbon transport in the Scotia Sea (Southern Ocean). Biogeosciences 12, 1955–1965 (2015).
Belcher, A. et al. Krill faecal pellets drive hidden pulses of particulate organic carbon in the marginal ice zone. Nat. Commun. 10, 889 (2019).
Tang, K. W., Gladyshev, M. I., Dubovskaya, O. P., Kirillin, G. & Grossart, H. Zooplankton carcasses and non-predatory mortality in freshwater and inland sea environments. J. Plankton Res. 36, 597–612 (2014).
Mauchline, J. & Fisher, L. R. The biology of euphausiids. Adv. Mar. Biol. 7, 1–454 (1969).
Gomez-Gutierrez, J., Peterson, W. T., De Robertis, A. & Brodeur, R. D. Mass mortality of krill caused by parasitoid ciliates. Science 301, 339 (2003).
Buchholz, F., Buchholz, C. & Weslawski, J. M. Ten years after: krill as indicator of changes in the macro-zooplankton communities of two Arctic fjords. Polar Biol. 33, 101–113 (2010).
Nelson, K. In Scheduling of Reproduction in Relation to Molting and Growth in Malacostracan Crustaceans. Crustacean Egg Production. 77–113 (A. A. Balkema, Rotterdam, 1991).
Segawa, S., Kato, M. & Murano, M. Growth, moult and filtering rate of krill in laboratory conditions. Mem. Natl. Inst. Polar Res. Tokyo 27, 93–103 (1983).
Ikeda, T. & Dixon, P. Observations on moulting in Antarctic krill (Euphausia superba Dana). Aust. J. Mar. Freshw. Res. 33, 71–76 (1982).
Yoshikoshi, K. & Ko, Y. Structure and function of the peritrophic membranes of copepods. Nippon Suisan Gakk. 54, 1077–1082 (1988).
Nicol, S. & Stolp, M. Sinking rates of cast exoskeletons of Antarctic krill (Euphausia superba Dana) and their role in the vertical flux of particulate matter and fluoride in the Southern Ocean. Deep-Sea Res. 36, 1753–1762 (1989).
Hamner, W. M., Hamner, P. P., Obst, B. S. & Carleton, J. H. Field observations on the ontogeny of schooling of Euphausia superba furciliae and its relationship to ice in Antarctic waters. Limn. Oceanogr. 34, 451–456 (1989).
Tarling, G. A. et al. Variability and predictability of Antarctic krill swarm structure. Deep-Sea Res. PT I 56, 1994–2012 (2009).
Siegel, V. & Watkins, J. L. In Biology and Ecology of Antarctic Krill. Advances in Polar Ecology. 21–100 (Springer, Cham, 2016).
Nicol, S. & Foster, J. In Advances in Polar Ecology. 387–421 (Springer, Cham, 2016).
Cavan, E. L. et al. The importance of Antarctic krill in biogeochemical cycles. Nat. Commun. 10, 4742 (2019).
Tarling, G. A. & Johnson, M. L. Satiation gives krill that sinking feeling. Curr. Biol. 16, 83–84 (2006).
Tarling, G. A. et al. Natural growth rates in Antarctic krill (Euphausia superba): I. Improving methodology and predicting intermolt period. Limnol. Oceanogr. 51, 959–972 (2006).
Buchholz, F. Moult cycle and growth of Antarctic krill Euphausia superba in the laboratory. Mar. Ecol. Prog. Ser. 69, 217–229 (1991).
Jones, E. M., Bakker, D. C. E., Venables, H. J. & Watson, A. J. Dynamic seasonal cycling of inorganic carbon downstream of South Georgia, Southern Ocean. Deep-Sea Res. PT II 59–60, 25–35 (2012).
Schiermeier, Q. The real holes in climate science: like any other field, research on climate change has some fundamental gaps, although not the ones typically claimed by sceptics. Quirin Schiermeier takes a hard look at some of the biggest problem areas. Nature 463(7279), 284 (2010).
Flores, H. et al. Impact of climate change on Antarctic krill. Mar. Ecol. Prog. Ser. 458, 1–19 (2012).
Tarling, G. A. & Fielding, S. In Advances in Polar Ecology 279–319 (Springer, Cham, 2016).
Fielding, S. et al. Interannual variability in Antarctic krill (Euphausia superba) density at South Georgia, Southern Ocean: 1997–2013, ICES J. Mar. Sci. 71, 2578–2588 (2014).
Rembauville, M., Salter, I., Leblond, N., Gueneugues, A. & Blain, S. Export fluxes in a naturally iron-fertilized area of the Southern Ocean–Part 1: seasonal dynamics of particulate organic carbon export from a moored sediment trap. Biogeosciences 12, 3153–3170 (2015).
Wefer, G., Fischer, G., Fuetterer, D. & Gersonde, R. Seasonal particle flux in the Bransfield Strait. Antarctica. Deep-Sea Res. 35, 891–898 (1988).
Saunders, R. A. et al. Intra-annual variability in the density of Antarctic krill (Euphausia superba) at South Georgia, 2002–2005: within-year variation provides a new framework for interpreting previous ‘annual’ estimates of krill density. CCAMLR Sci. 14, 27–41 (2007).
Kawaguchi, S., Nicol, S. & Press, A. J. Direct effects of climate change on the Antarctic krill fishery. Fish. Manag. Ecol. 16, 424–427 (2009).
CCAMLR https://www.ccamlr.org/en/system/files/00%20KRI48%202018.pdf (2018).
Meyer B. & Teschke M. In Advances in Polar Ecology. 145–174 (Springer, Cham, 2016).
Buchholz, F. Moult cycle and seasonal activities of chitinolytic enzymes in the integument and digestive tract of the Antarctic krill, Euphausia superba. Polar Biol. 9, 311–317 (1989).
Atkinson, A. et al. Natural growth rates in Antarctic krill (Euphausia superba): II. Predictive models based on food, temperature, body length, sex, and maturity stage. Limnol. Oceanogr. 51, 973–987 (2006).
Murphy, E. J. et al. Restricted regions of enhanced growth of Antarctic krill in the circumpolar Southern Ocean. Sci. Rep. UK 7, 14 (2017b).
Young, E. F., Thorpe, S. E., Banglawala, N. & Murphy, E. J. Variability in transport pathways on and around the South Georgia shelf, Southern Ocean: implications for recruitment and retention. J. Geophys. Res. Oceans 119, 1–12 (2014).
Lascara, C. M., Hofmann, E. E., Ross, R. M. & Quetin, L. B. Seasonal variability in the distribution of Antarctic krill, Euphausia superba, west of the Antarctic Peninsula. Deep-Sea Res. PT I 46, 951–984 (1999).
Lawson, G. L., Wiebe, P. H., Stanton, T. K. & Ashjian, C. J. Euphausiid distribution along the Western Antarctic Peninsula—Part A: development of robust multi-frequency acoustic techniques to identify euphausiid aggregations and quantify euphausiid size, abundance, and biomass. Deep-Sea Res PT II 55, 412–431 (2008).
Kane, M. K., Yopak, R., Roman, C. & Menden-Deuer, S. Krill motion in the Southern Ocean: quantifying in situ krill movement behaviors and distributions during the late austral autumn and spring. Limnol. Oceanogr. 63, 2839–2857 (2018).
Schmidt, K. et al. Seabed foraging by Antarctic krill: implications for stock assessment, benthic‐pelagic coupling, and the vertical transfer of iron. Limnol. Oceanogr. 56, 1411–1428 (2011).
Reiss, C. S. et al. Overwinter habitat selection by Antarctic krill under varying sea-ice conditions: implications for top predators and fishery management. Mar. Ecol. Prog. Ser. 568, 1–16 (2017).
Brierley, A. et al. Use of moored acoustic instruments to measure short-term variability in abundance of Antarctic krill. Limnol. Oceanogr.-Meth. 4, 18–29 (2006).
Marr, J. W. S. The natural history and geography of the Antarctic krill (Euphausia superba Dana). Discov. Rep. 32, 33–464 (1962).
Ross, R. M. & Quetin, L. B. In Krill: Biology, Ecology and Fisheries 150–181 (Blackwells, New York, 2000).
Murphy, E. J. et al. Climatically driven fluctuations in Southern Ocean ecosystems. Proc. R. Soc. B 274, 3057–3067 (2007).
Reid, K. et al. Krill population dynamics at South Georgia: implications for ecosystem-based fisheries management. Mar. Ecol. Prog. Ser. 399, 243–252 (2010).
Cavan, E. L. et al. Attenuation of particulate organic carbon flux in the Scotia Sea, Southern Ocean, is controlled by zooplankton faecal pellets. J. Geophys. Res. 3, 821–830 (2015).
Belcher, A. et al. The potential role of Antarctic krill faecal pellets in efficient carbon export at the marginal ice zone of the South Orkney Islands in spring. Polar Biol. 40, 2001–2013 (2017).
Atkinson, A., Siegel, V., Pakhomov, E. A., Jessopp, M. J. & Loeb, V. A. Re-appraisal of the total biomass and annual production of Antarctic krill. Deep-Res. PT I 56, 727–740 (2009).
Hill, S. L., Phillips, T. & Atkinson, A. Potential climate change effects on the habitat of Antarctic krill in the Weddell quadrant of the Southern Ocean. PLoS ONE 8, e72246 (2013).
Klein, E. S., Hill, S. L., Hinke, J. T., Phillips, T. & Watters, G. M. Impacts of rising sea temperature on krill increase risks for predators in the Scotia Sea. PLoS ONE 13, e0191011 (2018).
Schlitzer, R. Carbon export fluxes in the Southern Ocean: results from inverse modeling and comparison with satellite-based estimates. Deep-Sea Res. PT II 49, 1623–1644 (2002).
González, H. The distribution and abundance of krill faecal material and oval pellets in the Scotia and Weddell Seas (Antarctica) and their role in particle flux. Polar Biol. 12, 81–91 (1992).
Miller, D. G. M. Variation in body length measurement of Euphausia superba Dana. Polar Biol. 2, 17–20 (1983).
Whitehouse, M. J. et al. Substantial primary production in the land-remote region of the central and northern Scotia Sea. Deep-Sea Res. PT II 59–60, 47–56 (2012).
Kils, U. The swimming behaviour, swimming performance and energy balance of Antarctic krill Euphausia superba. Biomass Sci. Ser. 3, 122 (1981).
Source: Ecology - nature.com