in

Conventional analysis methods underestimate the plant-available pools of calcium, magnesium and potassium in forest soils

  • 1.

    Marschner, H. Mineral Nutrition of Higher Plants (Academic Press, Cambridge, 1995).

    Google Scholar 

  • 2.

    Bormann, F. & Likens, G. Nutrient cycling. Science 155, 424–429 (1967).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Ranger, J. & Turpault, M. P. Input–output nutrient budgets as a diagnostic tool for sustainable forest management. For. Ecol. Manage. 122, 139–154 (1999).

    Article  Google Scholar 

  • 4.

    Badeau, V., Dambrine, E. & Walter, C. Propriétés des sols forestiers français: Résultats du premier inventaire systématique. Étude Gest. des Sols 6, 165 (1999).

    Google Scholar 

  • 5.

    van der Heijden, G. et al. Long-term sustainability of forest ecosystems on sandstone in the Vosges Mountains (France) facing atmospheric deposition and silvicultural change. For. Ecol. Manage. 261, 730–740 (2011).

    Article  Google Scholar 

  • 6.

    Johnson, J. et al. The response of soil solution chemistry in European forests to decreasing acid deposition. Glob. Change Biol. 24, 3603–3619 (2018).

    ADS  Article  Google Scholar 

  • 7.

    Jonard, M. et al. Deterioration of Norway spruce vitality despite a sharp decline in acid deposition: A long-term integrated perspective. Glob. Change Biol. 18, 711–725 (2012).

    ADS  Article  Google Scholar 

  • 8.

    Bailey, S. W., Horsley, S. B. & Long, R. P. Thirty years of change in forest soils of the Allegheny Plateau, Pennsylvania. Soil Sci. Soc. Am. J. 69, 681–690 (2005).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Hedin, L. O. et al. Steep declines in atmospheric base cations in regions of Europe and North America. Nature 367, 351–354 (1994).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Hedin, L. O. & Likens, G. E. Atmospheric dust and acid rain. Sci. Am. 275, 88–92 (1996).

    CAS  Article  Google Scholar 

  • 11.

    Likens, G. E. et al. The biogeochemistry of calcium at Hubbard Brook. Biogeochemistry 41, 89–173 (1998).

    CAS  Article  Google Scholar 

  • 12.

    Lövblad, G., Persson, C., & Roos, E. Deposition of Base Cations in Sweden. Swedish Environmental Protection Agency, Report 5119, ISBN 91-620-5119-9, ISSN 0282-7298. 60 (Stockholm, Sweden, 2000). https://www.naturvardsverket.se/Documents/publikationer/620-6145-3.pdf?pid=2834. Accessed 11 Aug 2020.

  • 13.

    Achat, D. L. et al. Quantifying consequences of removing harvesting residues on forest soils and tree growth—A meta-analysis. For. Ecol. Manage. 348, 124–141 (2015).

    Article  Google Scholar 

  • 14.

    Thiffault, E. et al. Effects of forest biomass harvesting on soil productivity in boreal and temperate forests—A review. Environ. Rev. 19, 278–309 (2011).

    Article  CAS  Google Scholar 

  • 15.

    Talkner, U. et al. (2019) Nutritional status of major forest tree species in Germany. In Status and Dynamics of Forests in Germany: Results of the National Forest Monitoring (eds Wellbrock, N. & Bolte, A.) 261–293 (Springer, New York, 2019).

    Google Scholar 

  • 16.

    Jonard, M. et al. Tree mineral nutrition is deteriorating in Europe. Glob. Change Biol. 21, 418–430 (2015).

    ADS  Article  Google Scholar 

  • 17.

    De Oliveira Garcia, W., Amann, T. & Hartmann, J. Increasing biomass demand enlarges negative forest nutrient budget areas in wood export regions. Sci. Rep. 8, 1–7 (2018).

    ADS  Article  CAS  Google Scholar 

  • 18.

    Legout, A., Hansson, K., van der Heijden, G., Augusto, L. & Ranger, J. Chemical fertility of forest soils: Basic concepts. Rev. For. Française 66, 21–32 (2014).

    Google Scholar 

  • 19.

    Löfgren, S., Ågren, A., Gustafsson, J. P., Olsson, B. A. & Zetterberg, T. Impact of whole-tree harvest on soil and stream water acidity in southern Sweden based on HD-MINTEQ simulations and pH-sensitivity. For. Ecol. Manage. 383, 49–60 (2017).

    Article  Google Scholar 

  • 20.

    Casetou-Gustafson, S. et al. Current, steady-state and historical weathering rates of base cations at two forest sites in northern and southern Sweden: A comparison of three methods. Biogeosciences 17, 281–304 (2020).

    ADS  CAS  Article  Google Scholar 

  • 21.

    van der Heijden, G. et al. Tracing and modeling preferential flow in a forest soil—Potential impact on nutrient leaching. Geoderma 195–196, 12–22 (2013).

    Article  CAS  Google Scholar 

  • 22.

    van Sundert, K. et al. Towards comparable assessment of the soil nutrient status across scales—Review and development of nutrient metrics. Glob. Change Biol. 26, 392–409 (2020).

    ADS  Article  Google Scholar 

  • 23.

    Hansson, K. et al. Chemical fertility of forest ecosystems. Part 1: Common soil chemical analyses were poor predictors of stand productivity across a wide range of acidic forest soils. For. Ecol. Manage. 461, 117843 (2020).

    Article  Google Scholar 

  • 24.

    Legout, A. et al. Chemical fertility of forest ecosystems. Part 2: Towards redefining the concept by untangling the role of the different components of biogeochemical cycling. For. Ecol. Manage. 461, 117844 (2020).

    Article  Google Scholar 

  • 25.

    Lucash, M. S., Yanai, R. D., Blum, J. D. & Park, B. B. Foliar nutrient concentrations related to soil sources across a range of sites in the northeastern United States citation details. Soil Sci. Soc. Am. J. 76, 674–683 (2012).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Rosenstock, N. P. et al. Base cations in the soil bank: Non-exchangeable pools may sustain centuries of net loss to forestry and leaching. Soil 5, 351–366 (2019).

    CAS  Article  Google Scholar 

  • 27.

    Richardson, J. B., Petrenko, C. L. & Friedland, A. J. Base cations and micronutrients in forest soils along three clear-cut chronosequences in the northeastern United States. Nutr. Cycl. Agroecosyst. 109, 161–179 (2017).

    CAS  Article  Google Scholar 

  • 28.

    van der Heijden, G., Legout, A., Pollier, B., Ranger, J. & Dambrine, E. The dynamics of calcium and magnesium inputs by throughfall in a forest ecosystem on base poor soil are very slow and conservative: Evidence from an isotopic tracing experiment (26Mg and 44Ca). Biogeochemistry 118, 413–442 (2014).

    Article  CAS  Google Scholar 

  • 29.

    Smeck, N. E., Saif, H. T. & Bigham, J. M. Formation of a transient magnesium-aluminum double hydroxide in soils of southeastern Ohio. Soil Sci. Soc. Am. J. 58, 470–476 (1994).

    ADS  CAS  Article  Google Scholar 

  • 30.

    van Reeuwijk, L. P. & de Villiers, J. M. Potassium fixation by amorphous aluminosilica gels. Soil Sci. Soc. Am. J. 32, 238–240 (1968).

    Article  Google Scholar 

  • 31.

    Collignon, C., Ranger, J. & Turpault, M. P. Seasonal dynamics of Al- and Fe-bearing secondary minerals in an acid forest soil: Influence of Norway spruce roots (Picea abies (L.) Karst.). Eur. J. Soil Sci. 63, 592–602 (2012).

    CAS  Article  Google Scholar 

  • 32.

    Hall, S. J. & Huang, W. Iron reduction: A mechanism for dynamic cycling of occluded cations in tropical forest soils?. Biogeochemistry 136, 91–102 (2017).

    CAS  Article  Google Scholar 

  • 33.

    Sparks, D. L. Potassium dynamics in soils. In Advances in Soil Science (ed. Stewart, B. A.) 1–63 (Springer, New York, 1987).

    Google Scholar 

  • 34.

    Hinsinger, P. & Jaillard, B. Root-induced release of interlayer potassium and vermiculitization of phlogopite as related to potassium depletion in the rhizosphere of ryegrass. J. Soil Sci. 44, 525–534 (1993).

    CAS  Article  Google Scholar 

  • 35.

    Falk Øgaard, A. & Krogstad, T. Release of interlayer potassium in Norwegian grassland soils. J. Plant Nutr. Soil Sci. 168, 80–88 (2005).

    Article  CAS  Google Scholar 

  • 36.

    Hamon, R. E., Bertrand, I. & McLaughlin, M. J. Use and abuse of isotopic exchange data in soil chemistry. Aust. J. Soil Res. 40, 1371–1381 (2002).

    CAS  Article  Google Scholar 

  • 37.

    Ebelhar, S. A. Labile pool. In Encyclopedia of Earth Sciences Series (ed. Chesworth, W.) 425–426 (Springer, Dordrecht, 2008).

    Google Scholar 

  • 38.

    Tendille, C., de Ruere, J. G. & Barbier, G. Echanges isotopiques du potassium peu mobile des sols. C.R Acad. Sci. 243, 87–89 (1956).

    CAS  Google Scholar 

  • 39.

    Masozera, C. & Bouyer, S. Potassium et calicum labiles dans quelques types de sols tropicaux. in Sur l’emploi des radioisotopes et des rayonnments dans la recherche sur les relations sol-plante, vol. 12 (1971).

  • 40.

    Fardeau, J. C., Hétier, J. M. & Jappe, J. Potassium assimilable du sol: Identification au comportement des ions isotopiquement diluables. C.R Acad. Sci. 288, 1039–1042 (1979).

    CAS  Google Scholar 

  • 41.

    Blume, J. M. & Smith, D. Detrmination of exchangeable calcium and cation-exchange capacity by equilibration with Ca-45. Soil Sci. 77, 9–18 (1954).

    ADS  CAS  Article  Google Scholar 

  • 42.

    Newbould, P. & Russell, R. S. Isotopic equilibration of calcium-45 with labile soil calcium. Plant Soil 18, 239–257 (1963).

    CAS  Article  Google Scholar 

  • 43.

    Reeve, N. G. & Sumner, M. E. Determination of exchangeable calcium in soils by isotopie dilution. Agrochemophysica 1, 13–18 (1969).

    CAS  Google Scholar 

  • 44.

    van der Heijden, G., Legout, A., Mareschal, L., Ranger, J. & Dambrine, E. Filling the gap in Ca input-output budgets in base-poor forest ecosystems: The contribution of non-crystalline phases evidenced by stable isotopic dilution. Geochim. Cosmochim. Acta 209, 135–148 (2017).

    ADS  Article  CAS  Google Scholar 

  • 45.

    van der Heijden, G. et al. Measuring plant-available Mg, Ca, and K pools in the soil—An isotopic dilution assay. ACS Earth Sp. Chem. 2, 292–313 (2018).

    Article  CAS  Google Scholar 

  • 46.

    Graham, E. R. & Fox, R. L. Tropical soil potassium as related to labile pool and calcium exchange equilibria calcium soil analysis. Soil Sci. 3, 318–322 (1971).

    ADS  Article  Google Scholar 

  • 47.

    Ross, D. S., Matschonat, G. & Skyllberg, U. Cation exchange in forest soils: The need for a new perspective. Eur. J. Soil Sci. 59, 1141–1159 (2008).

    CAS  Article  Google Scholar 

  • 48.

    Reuss, J. O. & Johnson, D. W. Soil-solution interactions. In Acid Deposition and the Acidification of Soils and Waters (eds Reuss, J. O. & Johnson, D. W.) 33–54 (Springer, New York, 1986).

    Google Scholar 

  • 49.

    Salmon, R. C. Cation exchange reactions. J. Soil Sci. 15, 273–283 (1964).

    CAS  Article  Google Scholar 

  • 50.

    André, J. P. & Pijarowski, L. Cation exchange properties of Sphagnumpeat: Exchange between two cations and protons. J. Soil Sci. 28, 573–584 (1977).

    Article  Google Scholar 

  • 51.

    Ponette, Q. Downward movement of dolomite, kieserite or a mixture of CaCO3 and kieserite through the upper layers of an acid forest soil. Water. Air. Soil Pollut. 95, 353–379 (1997).

    ADS  CAS  Google Scholar 

  • 52.

    Sparks, D. L. Inorganic soil components. In Environmental Soil Chemistry (ed. Sparks, D. L.) 43–73 (Academic Press, Cambridge, 2003).

    Google Scholar 

  • 53.

    Kosmulski, M. Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature. Adv. Colloid Interface Sci. 152, 14–25 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 54.

    Schwertmann, U. & Fechter, H. The point of zero charge of natural and synthetic ferrihydrites and its relation to adsorbed silicate. Clay Miner. 17, 471–476 (1982).

    ADS  CAS  Article  Google Scholar 

  • 55.

    Grove, J. H., Sumner, M. E. & Syers, J. K. Effect of lime on exchangeable magnesium in variable surface charge soils. Soil Sci. Soc. Am. J. 45, 497–500 (1981).

    ADS  CAS  Article  Google Scholar 

  • 56.

    Kinniburgh, D. G., Jackson, M. L. & Syers, J. K. Adsorption of alkaline earth, transition, and heavy metal cations by hydrous oxide gels of iron and aluminum. Soil Sci. Soc. Am. J. 40, 796–799 (1976).

    ADS  CAS  Article  Google Scholar 

  • 57.

    Myers, J. A., McLean, E. O. & Bigham, J. M. Reductions in exchangeable magnesium with liming of acid Ohio soils. Soil Sci. Soc. Am. J. 52, 131–136 (1988).

    ADS  CAS  Article  Google Scholar 

  • 58.

    Rowley, M. C., Grand, S. & Verrecchia, ÉP. Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry 137, 27–49 (2018).

    CAS  Article  Google Scholar 

  • 59.

    Simpson, A. J. et al. Molecular structures and associations of humic substances in the terrestrial environment. Naturwissenschaften 89, 84–88 (2002).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 60.

    Clarholm, M., Skyllberg, U. & Rosling, A. Organic acid induced release of nutrients from metal-stabilized soil organic matter—The unbutton model. Soil Biol. Biochem. 84, 168–176 (2015).

    CAS  Article  Google Scholar 

  • 61.

    Sowers, T. D., Stuckey, J. W. & Sparks, D. L. The synergistic effect of calcium on organic carbon sequestration to ferrihydrite. Geochem. Trans. 19, 4 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 62.

    Meyer, D. & Jungk, A. A new approach to quantify the utilization of non-exchangeable soil potassium by plants. Plant Soil 149, 235–243 (1993).

    CAS  Article  Google Scholar 

  • 63.

    Moritsuka, N., Yanai, J. & Kosaki, T. Possible processes releasing nonexchangeable potassium from the rhizosphere of maize. Plant Soil 258, 261–268 (2004).

    CAS  Article  Google Scholar 

  • 64.

    Mareschal, L. Effet des substitutions d’essences forestières sur l’évolution des sols et de leur minéralogie: Bilan après 28 ans dans le site expérimental de Breuil (Morvan) (Henri Poincaré, Nancy, 2008).

    Google Scholar 

  • 65.

    York, L. M., Carminati, A., Mooney, S. J., Ritz, K. & Bennett, M. M. The holistic rhizosphere: Integrating zones, processes, and semantics in the soil influenced by roots. J. Exp. Bot. 67, 3629–3643 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 66.

    Pradier, C. et al. Rainfall reduction impacts rhizosphere biogeochemistry in eucalypts grown in a deep Ferralsol in Brazil. Plant Soil 414, 339–354 (2017).

    CAS  Article  Google Scholar 

  • 67.

    Nezat, C. A., Blum, J. D., Yanai, R. D. & Hamburg, S. P. A sequential extraction to determine the distribution of apatite in granitoid soil mineral pools with application to weathering at the Hubbard Brook Experimental Forest, NH, USA. Appl. Geochem. 22, 2406–2421 (2007).

    CAS  Article  Google Scholar 

  • 68.

    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2019). https://www.r-project.org/. Accessed 17 Mar 2019.


  • Source: Ecology - nature.com

    A symbiotic nutrient exchange within the cyanosphere microbiome of the biocrust cyanobacterium, Microcoleus vaginatus

    Protein metabolism and physical fitness are physiological determinants of body condition in Southern European carnivores