Marschner, H. Mineral Nutrition of Higher Plants (Academic Press, Cambridge, 1995).
Bormann, F. & Likens, G. Nutrient cycling. Science 155, 424–429 (1967).
Ranger, J. & Turpault, M. P. Input–output nutrient budgets as a diagnostic tool for sustainable forest management. For. Ecol. Manage. 122, 139–154 (1999).
Badeau, V., Dambrine, E. & Walter, C. Propriétés des sols forestiers français: Résultats du premier inventaire systématique. Étude Gest. des Sols 6, 165 (1999).
van der Heijden, G. et al. Long-term sustainability of forest ecosystems on sandstone in the Vosges Mountains (France) facing atmospheric deposition and silvicultural change. For. Ecol. Manage. 261, 730–740 (2011).
Johnson, J. et al. The response of soil solution chemistry in European forests to decreasing acid deposition. Glob. Change Biol. 24, 3603–3619 (2018).
Jonard, M. et al. Deterioration of Norway spruce vitality despite a sharp decline in acid deposition: A long-term integrated perspective. Glob. Change Biol. 18, 711–725 (2012).
Bailey, S. W., Horsley, S. B. & Long, R. P. Thirty years of change in forest soils of the Allegheny Plateau, Pennsylvania. Soil Sci. Soc. Am. J. 69, 681–690 (2005).
Hedin, L. O. et al. Steep declines in atmospheric base cations in regions of Europe and North America. Nature 367, 351–354 (1994).
Hedin, L. O. & Likens, G. E. Atmospheric dust and acid rain. Sci. Am. 275, 88–92 (1996).
Likens, G. E. et al. The biogeochemistry of calcium at Hubbard Brook. Biogeochemistry 41, 89–173 (1998).
Lövblad, G., Persson, C., & Roos, E. Deposition of Base Cations in Sweden. Swedish Environmental Protection Agency, Report 5119, ISBN 91-620-5119-9, ISSN 0282-7298. 60 (Stockholm, Sweden, 2000). https://www.naturvardsverket.se/Documents/publikationer/620-6145-3.pdf?pid=2834. Accessed 11 Aug 2020.
Achat, D. L. et al. Quantifying consequences of removing harvesting residues on forest soils and tree growth—A meta-analysis. For. Ecol. Manage. 348, 124–141 (2015).
Thiffault, E. et al. Effects of forest biomass harvesting on soil productivity in boreal and temperate forests—A review. Environ. Rev. 19, 278–309 (2011).
Talkner, U. et al. (2019) Nutritional status of major forest tree species in Germany. In Status and Dynamics of Forests in Germany: Results of the National Forest Monitoring (eds Wellbrock, N. & Bolte, A.) 261–293 (Springer, New York, 2019).
Jonard, M. et al. Tree mineral nutrition is deteriorating in Europe. Glob. Change Biol. 21, 418–430 (2015).
De Oliveira Garcia, W., Amann, T. & Hartmann, J. Increasing biomass demand enlarges negative forest nutrient budget areas in wood export regions. Sci. Rep. 8, 1–7 (2018).
Legout, A., Hansson, K., van der Heijden, G., Augusto, L. & Ranger, J. Chemical fertility of forest soils: Basic concepts. Rev. For. Française 66, 21–32 (2014).
Löfgren, S., Ågren, A., Gustafsson, J. P., Olsson, B. A. & Zetterberg, T. Impact of whole-tree harvest on soil and stream water acidity in southern Sweden based on HD-MINTEQ simulations and pH-sensitivity. For. Ecol. Manage. 383, 49–60 (2017).
Casetou-Gustafson, S. et al. Current, steady-state and historical weathering rates of base cations at two forest sites in northern and southern Sweden: A comparison of three methods. Biogeosciences 17, 281–304 (2020).
van der Heijden, G. et al. Tracing and modeling preferential flow in a forest soil—Potential impact on nutrient leaching. Geoderma 195–196, 12–22 (2013).
van Sundert, K. et al. Towards comparable assessment of the soil nutrient status across scales—Review and development of nutrient metrics. Glob. Change Biol. 26, 392–409 (2020).
Hansson, K. et al. Chemical fertility of forest ecosystems. Part 1: Common soil chemical analyses were poor predictors of stand productivity across a wide range of acidic forest soils. For. Ecol. Manage. 461, 117843 (2020).
Legout, A. et al. Chemical fertility of forest ecosystems. Part 2: Towards redefining the concept by untangling the role of the different components of biogeochemical cycling. For. Ecol. Manage. 461, 117844 (2020).
Lucash, M. S., Yanai, R. D., Blum, J. D. & Park, B. B. Foliar nutrient concentrations related to soil sources across a range of sites in the northeastern United States citation details. Soil Sci. Soc. Am. J. 76, 674–683 (2012).
Rosenstock, N. P. et al. Base cations in the soil bank: Non-exchangeable pools may sustain centuries of net loss to forestry and leaching. Soil 5, 351–366 (2019).
Richardson, J. B., Petrenko, C. L. & Friedland, A. J. Base cations and micronutrients in forest soils along three clear-cut chronosequences in the northeastern United States. Nutr. Cycl. Agroecosyst. 109, 161–179 (2017).
van der Heijden, G., Legout, A., Pollier, B., Ranger, J. & Dambrine, E. The dynamics of calcium and magnesium inputs by throughfall in a forest ecosystem on base poor soil are very slow and conservative: Evidence from an isotopic tracing experiment (26Mg and 44Ca). Biogeochemistry 118, 413–442 (2014).
Smeck, N. E., Saif, H. T. & Bigham, J. M. Formation of a transient magnesium-aluminum double hydroxide in soils of southeastern Ohio. Soil Sci. Soc. Am. J. 58, 470–476 (1994).
van Reeuwijk, L. P. & de Villiers, J. M. Potassium fixation by amorphous aluminosilica gels. Soil Sci. Soc. Am. J. 32, 238–240 (1968).
Collignon, C., Ranger, J. & Turpault, M. P. Seasonal dynamics of Al- and Fe-bearing secondary minerals in an acid forest soil: Influence of Norway spruce roots (Picea abies (L.) Karst.). Eur. J. Soil Sci. 63, 592–602 (2012).
Hall, S. J. & Huang, W. Iron reduction: A mechanism for dynamic cycling of occluded cations in tropical forest soils?. Biogeochemistry 136, 91–102 (2017).
Sparks, D. L. Potassium dynamics in soils. In Advances in Soil Science (ed. Stewart, B. A.) 1–63 (Springer, New York, 1987).
Hinsinger, P. & Jaillard, B. Root-induced release of interlayer potassium and vermiculitization of phlogopite as related to potassium depletion in the rhizosphere of ryegrass. J. Soil Sci. 44, 525–534 (1993).
Falk Øgaard, A. & Krogstad, T. Release of interlayer potassium in Norwegian grassland soils. J. Plant Nutr. Soil Sci. 168, 80–88 (2005).
Hamon, R. E., Bertrand, I. & McLaughlin, M. J. Use and abuse of isotopic exchange data in soil chemistry. Aust. J. Soil Res. 40, 1371–1381 (2002).
Ebelhar, S. A. Labile pool. In Encyclopedia of Earth Sciences Series (ed. Chesworth, W.) 425–426 (Springer, Dordrecht, 2008).
Tendille, C., de Ruere, J. G. & Barbier, G. Echanges isotopiques du potassium peu mobile des sols. C.R Acad. Sci. 243, 87–89 (1956).
Masozera, C. & Bouyer, S. Potassium et calicum labiles dans quelques types de sols tropicaux. in Sur l’emploi des radioisotopes et des rayonnments dans la recherche sur les relations sol-plante, vol. 12 (1971).
Fardeau, J. C., Hétier, J. M. & Jappe, J. Potassium assimilable du sol: Identification au comportement des ions isotopiquement diluables. C.R Acad. Sci. 288, 1039–1042 (1979).
Blume, J. M. & Smith, D. Detrmination of exchangeable calcium and cation-exchange capacity by equilibration with Ca-45. Soil Sci. 77, 9–18 (1954).
Newbould, P. & Russell, R. S. Isotopic equilibration of calcium-45 with labile soil calcium. Plant Soil 18, 239–257 (1963).
Reeve, N. G. & Sumner, M. E. Determination of exchangeable calcium in soils by isotopie dilution. Agrochemophysica 1, 13–18 (1969).
van der Heijden, G., Legout, A., Mareschal, L., Ranger, J. & Dambrine, E. Filling the gap in Ca input-output budgets in base-poor forest ecosystems: The contribution of non-crystalline phases evidenced by stable isotopic dilution. Geochim. Cosmochim. Acta 209, 135–148 (2017).
van der Heijden, G. et al. Measuring plant-available Mg, Ca, and K pools in the soil—An isotopic dilution assay. ACS Earth Sp. Chem. 2, 292–313 (2018).
Graham, E. R. & Fox, R. L. Tropical soil potassium as related to labile pool and calcium exchange equilibria calcium soil analysis. Soil Sci. 3, 318–322 (1971).
Ross, D. S., Matschonat, G. & Skyllberg, U. Cation exchange in forest soils: The need for a new perspective. Eur. J. Soil Sci. 59, 1141–1159 (2008).
Reuss, J. O. & Johnson, D. W. Soil-solution interactions. In Acid Deposition and the Acidification of Soils and Waters (eds Reuss, J. O. & Johnson, D. W.) 33–54 (Springer, New York, 1986).
Salmon, R. C. Cation exchange reactions. J. Soil Sci. 15, 273–283 (1964).
André, J. P. & Pijarowski, L. Cation exchange properties of Sphagnumpeat: Exchange between two cations and protons. J. Soil Sci. 28, 573–584 (1977).
Ponette, Q. Downward movement of dolomite, kieserite or a mixture of CaCO3 and kieserite through the upper layers of an acid forest soil. Water. Air. Soil Pollut. 95, 353–379 (1997).
Sparks, D. L. Inorganic soil components. In Environmental Soil Chemistry (ed. Sparks, D. L.) 43–73 (Academic Press, Cambridge, 2003).
Kosmulski, M. Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature. Adv. Colloid Interface Sci. 152, 14–25 (2009).
Schwertmann, U. & Fechter, H. The point of zero charge of natural and synthetic ferrihydrites and its relation to adsorbed silicate. Clay Miner. 17, 471–476 (1982).
Grove, J. H., Sumner, M. E. & Syers, J. K. Effect of lime on exchangeable magnesium in variable surface charge soils. Soil Sci. Soc. Am. J. 45, 497–500 (1981).
Kinniburgh, D. G., Jackson, M. L. & Syers, J. K. Adsorption of alkaline earth, transition, and heavy metal cations by hydrous oxide gels of iron and aluminum. Soil Sci. Soc. Am. J. 40, 796–799 (1976).
Myers, J. A., McLean, E. O. & Bigham, J. M. Reductions in exchangeable magnesium with liming of acid Ohio soils. Soil Sci. Soc. Am. J. 52, 131–136 (1988).
Rowley, M. C., Grand, S. & Verrecchia, ÉP. Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry 137, 27–49 (2018).
Simpson, A. J. et al. Molecular structures and associations of humic substances in the terrestrial environment. Naturwissenschaften 89, 84–88 (2002).
Clarholm, M., Skyllberg, U. & Rosling, A. Organic acid induced release of nutrients from metal-stabilized soil organic matter—The unbutton model. Soil Biol. Biochem. 84, 168–176 (2015).
Sowers, T. D., Stuckey, J. W. & Sparks, D. L. The synergistic effect of calcium on organic carbon sequestration to ferrihydrite. Geochem. Trans. 19, 4 (2018).
Meyer, D. & Jungk, A. A new approach to quantify the utilization of non-exchangeable soil potassium by plants. Plant Soil 149, 235–243 (1993).
Moritsuka, N., Yanai, J. & Kosaki, T. Possible processes releasing nonexchangeable potassium from the rhizosphere of maize. Plant Soil 258, 261–268 (2004).
Mareschal, L. Effet des substitutions d’essences forestières sur l’évolution des sols et de leur minéralogie: Bilan après 28 ans dans le site expérimental de Breuil (Morvan) (Henri Poincaré, Nancy, 2008).
York, L. M., Carminati, A., Mooney, S. J., Ritz, K. & Bennett, M. M. The holistic rhizosphere: Integrating zones, processes, and semantics in the soil influenced by roots. J. Exp. Bot. 67, 3629–3643 (2016).
Pradier, C. et al. Rainfall reduction impacts rhizosphere biogeochemistry in eucalypts grown in a deep Ferralsol in Brazil. Plant Soil 414, 339–354 (2017).
Nezat, C. A., Blum, J. D., Yanai, R. D. & Hamburg, S. P. A sequential extraction to determine the distribution of apatite in granitoid soil mineral pools with application to weathering at the Hubbard Brook Experimental Forest, NH, USA. Appl. Geochem. 22, 2406–2421 (2007).
R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2019). https://www.r-project.org/. Accessed 17 Mar 2019.
Source: Ecology - nature.com