in

Coral cover surveys corroborate predictions on reef adaptive potential to thermal stress

  • 1.

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 2.

    Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 3.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 4.

    Van Hooidonk, R., Maynard, J. A. & Planes, S. Temporary refugia for coral reefs in a warming world. Nat. Clim. Chang. 3, 508–511 (2013).

    ADS  Google Scholar 

  • 5.

    Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Chang. 26, 152–158 (2014).

    Google Scholar 

  • 6.

    Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).

    Google Scholar 

  • 7.

    Hughes, T. P. et al. Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat. Clim. Change 9, 40–43 (2019).

    ADS  Google Scholar 

  • 8.

    Krueger, T. et al. Common reef-building coral in the northern red sea resistant to elevated temperature and acidification. R. Soc. Open Sci. 4, 170038 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 9.

    Penin, L., Vidal-Dupiol, J. & Adjeroud, M. Response of coral assemblages to thermal stress: are bleaching intensity and spatial patterns consistent between events?. Environ. Monit. Assess. 185, 5031–5042 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 10.

    Thompson, D. M. & van Woesik, R. Corals escape bleaching in regions that recently and historically experienced frequent thermal stress. Proc. Biol. Sci. 276, 2893–2901 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 11.

    Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1–5 (2019).

    CAS  Google Scholar 

  • 12.

    Thomas, L. et al. Mechanisms of thermal tolerance in reef-building corals across a fine-grained environmental mosaic: lessons from Ofu, American Samoa. Front. Mar. Sci. 4, 434 (2018).

    Google Scholar 

  • 13.

    Bay, R. A. & Palumbi, S. R. Multilocus adaptation associated with heat resistance in reef-building corals. Curr. Biol. 24, 2952–2956 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Wilson, K. L., Tittensor, D. P., Worm, B. & Lotze, H. K. Incorporating climate change adaptation into marine protected area planning. Glob. Chang. Biol. 26, 3251–3267 (2020).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 15.

    Baums, I. B. et al. Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. Ecol. Appl. 29, (2019).

  • 16.

    Matz, M. V., Treml, E. & Haller, B. C. Predicting coral adaptation to global warming in the Indo-West-Pacific. BioRxiv https://doi.org/10.1101/722314 (2019).

    Article  Google Scholar 

  • 17

    Selmoni, O., Rochat, E., Lecellier, G., Berteaux-Lecellier, V. & Joost, S. Seascape genomics as a new tool to empower coral reef conservation strategies: an example on north-western Pacific Acropora digitifera. Evol. Appl. https://doi.org/10.1101/588228 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 18

    Riginos, C., Crandall, E. D., Liggins, L., Bongaerts, P. & Treml, E. A. Navigating the currents of seascape genomics: how spatial analyses can augment population genomic studies. Curr. Zool. https://doi.org/10.1093/cz/zow067 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 19.

    Maina, J., Venus, V., McClanahan, T. R. & Ateweberhan, M. Modelling susceptibility of coral reefs to environmental stress using remote sensing data and GIS models. Ecol. Modell. 212, 180–199 (2008).

    Google Scholar 

  • 20.

    Liu, G., Strong, A. E. & Skirving, W. Remote sensing of sea surface temperatures during 2002 Barrier Reef coral bleaching. Eos Trans. Am. Geophys. Union 84, 137–141 (2003).

    ADS  Google Scholar 

  • 21

    Rochat, E. & Joost, S. Spatial areas of genotype probability (SPAG): predicting the spatial distribution of adaptive genetic variants under future climatic conditions. BioRxiv. https://doi.org/10.1101/2019.12.20.884114 (2019).

    Article  Google Scholar 

  • 22

    Boulanger, E., Dalongeville, A., Andrello, M., Mouillot, D. & Manel, S. Spatial graphs highlight how multi-generational dispersal shapes landscape genetic patterns. Ecography (Cop) https://doi.org/10.1111/ecog.05024 (2020).

    Article  Google Scholar 

  • 23

    Selmoni, O. et al. Seascape genomics reveals candidate molecular targets of heat stress adaptation in three coral species. BioRxiv. https://doi.org/10.1101/2020.05.12.090050 (2020).

    Article  Google Scholar 

  • 24.

    Job, S. New Caledonia network of coral reef observation (RORC) – Field campaign report 2017–2018. (French title: Réseau d’observation des récifs coralliens (RORC) de Nouvelle-Calédonie. Campagne 2017–2018. Rapport Pays. Rapport CORTEX. Pour le compte de : Conservatoire d’espaces naturels de Nouvelle-Calédonie – Province des îles Loyauté – Observatoire de l’environnement). (CORTEX, New Caledonia, 2018).

  • 25.

    Lefèvre, J., Marchesiello, P., Jourdain, N. C., Menkes, C. & Leroy, A. Weather regimes and orographic circulation around New Caledonia. Mar. Pollut. Bull. 61, 413–431 (2010).

    PubMed  Google Scholar 

  • 26.

    Marchesiello, P., Lefèvre, J., Vega, A., Couvelard, X. & Menkes, C. Coastal upwelling, circulation and heat balance around New Caledonia’s barrier reef. Mar. Pollut. Bull. 61, 432–448 (2010).

    CAS  PubMed  Google Scholar 

  • 27.

    Berkelmans, R., Weeks, S. J. & Steinberga, C. R. Upwelling linked to warm summers and bleaching on the Great Barrier Reef. Limnol. Oceanogr. 55, 2634–2644 (2010).

    ADS  Google Scholar 

  • 28.

    Cravatte, S. et al. Regional circulation around New Caledonia from two decades of observations. J. Mar. Syst. 148, 249–271 (2015).

    Google Scholar 

  • 29.

    Hénin, C., Guillerm, J. & Chabert, L. Circulation superficielle autour de la Nouvelle-Calédonie. Océanographie Trop. 19, 113–126 (1984).

    Google Scholar 

  • 30.

    Magris, R. A., Pressey, R. L., Weeks, R. & Ban, N. C. Integrating connectivity and climate change into marine conservation planning. Biol. Cons. 170, 207–221 (2014).

    Google Scholar 

  • 31.

    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).

    ADS  CAS  Google Scholar 

  • 32.

    Welle, P. D., Small, M. J., Doney, S. C. & Azevedo, I. L. Estimating the effect of multiple environmental stressors on coral bleaching and mortality. PLoS ONE 12, e0175018 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  • 33.

    Kenkel, C. D., Almanza, A. T. & Matz, M. V. Fine-scale environmental specialization of reef-building corals might be limiting reef recovery in the Florida Keys. Ecology 96, 3197–3212 (2015).

    Article  Google Scholar 

  • 34.

    Palumbi, S. R. Population genetics, demographic connectivity, and the design of marine reserves. Ecol. Appl. 13, 146–158 (2003).

    Article  Google Scholar 

  • 35.

    Hock, K. et al. Connectivity and systemic resilience of the Great Barrier Reef. PLoS Biol. 15, (2017).

  • 36.

    Robinson, J. P. W., Wilson, S. K. & Graham, N. A. J. Abiotic and biotic controls on coral recovery 16 years after mass bleaching. Coral Reefs 38, 1255–1265 (2019).

    ADS  Article  Google Scholar 

  • 37.

    Kawecki, T. J. Adaptation to marginal habitats. Annu. Rev. Ecol. Evol. Syst. 39, 321–342 (2008).

    Article  Google Scholar 

  • 38.

    Treml, E. A. et al. Reproductive output and duration of the pelagic larval stage determine seascape-wide connectivity of marine populations. Integr. Comp. Biol. 52, 525–537 (2012).

    Article  Google Scholar 

  • 39.

    Storlazzi, C. D., van Ormondt, M., Chen, Y.-L. & Elias, E. P. L. Modeling fine-scale coral larval dispersal and interisland connectivity to help designate mutually-supporting coral reef marine protected areas: insights from Maui Nui, Hawaii. Front. Mar. Sci. 4, 381 (2017).

    Article  Google Scholar 

  • 40.

    Colberg, F., Brassington, G. B., Sandery, P., Sakov, P. & Aijaz, S. High and medium resolution ocean models for the Great Barrier Reef. Ocean Model. 145, 101507 (2020).

    Google Scholar 

  • 41.

    Andréfouët, S., Cabioch, G., Flamand, B. & Pelletier, B. A reappraisal of the diversity of geomorphological and genetic processes of New Caledonian coral reefs: A synthesis from optical remote sensing, coring and acoustic multibeam observations. Coral Reefs 28, 691–707 (2009).

    ADS  Google Scholar 

  • 42.

    Dalleau, M. et al. Use of habitats as surrogates of biodiversity for efficient coral reef conservation planning in Pacific Ocean islands. Conserv. Biol. 24, 541–552 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 43.

    Loya, Y. et al. Coral bleaching: the winners and the losers. Ecol. Lett. 4, 122–131 (2001).

    Google Scholar 

  • 44.

    Darling, E. S., Alvarez-Filip, L., Oliver, T. A., McClanahan, T. R. & Côté, I. M. Evaluating life-history strategies of reef corals from species traits. Ecol. Lett. 15, 1378–1386 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 45.

    Ayre, D. J. & Hughes, T. P. Genotypic diversity and gene flow in brooding and spawning corals along the great barrier reef, Australia. Evolution (NY) 54, 1590–1605 (2000).

    CAS  Google Scholar 

  • 46.

    Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004).

    Google Scholar 

  • 47.

    Selmoni, O., Vajana, E., Guillaume, A., Rochat, E. & Joost, S. Sampling strategy optimization to increase statistical power in landscape genomics: A simulation-based approach. Mol. Ecol. Resour. 20, (2020).

  • 48.

    EU Copernicus Marine Service. Global Ocean – In-Situ-Near-Real-Time Observations. (2017). Available at: https://marine.copernicus.eu. Accessed: 2nd February 2017

  • 49.

    Merchant, C. J. et al. Satellite-based time-series of sea-surface temperature since 1981 for climate applications. Sci. data 6, 223 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 50.

    UNEP-WCMC, WorldFish-Center, WRI & TNC. Global distribution of warm-water coral reefs, compiled from multiple sources including the Millennium Coral Reef Mapping Project. Version 1.3. (2010). Available at: https://data.unep-wcmc.org/datasets/1. Accessed: 9th May 2017

  • 51.

    QGIS development team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. (2009).

  • 52.

    Hijmans, R. J. raster: Geographic Data Analysis and Modeling. (2016).

  • 53.

    R Core Team. R: A Language and Environment for Statistical Computing. (2016).

  • 54.

    Ryan, W. B. F. et al. Global multi-resolution topography synthesis. Geochemistry, Geophys. Geosystems 10, (2009).

  • 55.

    van Etten, J. gdistance: Distances and Routes on Geographical Grids. (2018). Available at: https://cran.r-project.org/package=gdistance.

  • 56.

    Kilian, A. et al. Diversity arrays technology: A generic genome profiling technology on open platforms. Methods Mol. Biol. 888, 67–89 (2012).

    PubMed  Google Scholar 

  • 57.

    Zheng, X. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 58.

    Frichot, E., Schoville, S. D., Bouchard, G. & François, O. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol. Biol. Evol. 30, 1687–1699 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 59.

    Joost, S. et al. A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol. Ecol. 16, 3955–3969 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 60.

    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Google Scholar 

  • 61.

    Breheny, P. & Burchett, W. Visualization of regression models using visreg. R J. 9, 56–71 (2017).

    Google Scholar 

  • 62.

    Xuereb, A., Kimber, C. M., Curtis, J. M. R., Bernatchez, L. & Fortin, M. Putatively adaptive genetic variation in the giant California sea cucumber ( Parastichopus californicus ) as revealed by environmental association analysis of restriction-site associated DNA sequencing data. Mol. Ecol. 27, 5035–5048 (2018).

    CAS  PubMed  Google Scholar 

  • 63.

    Benestan, L. et al. Seascape genomics provides evidence for thermal adaptation and current-mediated population structure in American lobster (Homarus americanus). Mol. Ecol. 25, 5073–5092 (2016).

    PubMed  Google Scholar 

  • 64.

    Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).

    ADS  PubMed  Google Scholar 

  • 65.

    Borcard, D. & Legendre, P. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Modell. 153, 51–68 (2002).

    Google Scholar 

  • 66.

    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).

    Google Scholar 

  • 67.

    Ferrari, S. L. P. & Cribari-Neto, F. Beta regression for modelling rates and proportions. J. Appl. Stat. 31, 799–815 (2004).

    MathSciNet  MATH  Google Scholar 

  • 68.

    Verbeke, G., Molenberghs, G. & Rizopoulos, D. Random effects models for longitudinal data. In Longitudinal Research with Latent Variables 37–96 (Springer, Berlin, 2010). https://doi.org/10.1007/978-3-642-11760-2_2

  • 69.

    Garcia, T. P. & Marder, K. Statistical approaches to longitudinal data analysis in neurodegenerative diseases: Huntington’s disease as a model. Curr. Neurol. Neurosci. Rep. 17, 14 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 70.

    Bozdogan, H. Model selection and Akaike’s Information Criterion (AIC): the general theory and its analytical extensions. Psychometrika 52, 345–370 (1987).

    MathSciNet  MATH  Google Scholar 


  • Source: Ecology - nature.com

    Power-free system harnesses evaporation to keep items cool

    Plant part and a steep environmental gradient predict plant microbial composition in a tropical watershed