in

Cry1C rice doesn’t affect the ecological fitness of rice brown planthopper, Nilaparvata lugens either under RDV stress or not

  • 1.

    Li, Y. H., Hallerman, E. M., Liu, Q. S., Wu, K. M. & Peng, Y. F. The development and status of Bt rice in China. Plant Biotechnol. J. 14, 839–848 (2016).

    Article  Google Scholar 

  • 2.

    Li, X. et al. Comparison of nutritional quality between chinese indica rice with sck and crylAc genes and its nontransgenic counterpart. J. Food Sci. 72, 420–424 (2007).

    Article  Google Scholar 

  • 3.

    Liu, Q. S., Hallerman, E., Peng, Y. F. & Li, Y. H. Development of Bt rice and Bt maize in china and their efficacy in target pest control. Int. J. Mol. Sci. 17, 1–15 (2016).

    ADS  Google Scholar 

  • 4.

    Chen, M., Shelton, A. & Ye, G. Y. Insect-resistant genetically modified rice in china: from research to commercialization. Annu. Rev. Entomol. 56, 81–101 (2011).

    CAS  Article  Google Scholar 

  • 5.

    Mannakkara, A., Niu, L., Ma, W. H. & Lei, C. L. Zero effect of Bt rice on expression of genes coding for digestion, detoxification and immune responses and developmental performances of brown planthopper Nilaparvata lugens (Stål). J. Insect Physiol. 59, 985–993 (2013).

    CAS  Article  Google Scholar 

  • 6.

    Tian, J. C. et al. Assessing the effects of Cry1C rice and Cry2A rice to Pseudogonatopus flavifemur, a parasitoid of rice planthoppers. Sci. Rep. 7, 7838. https://doi.org/10.1038/s41598-017-08173-w (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 7.

    Tian, J. C. et al. The rice planthopper parasitoid Anagrus nilaparvatae is not at risk when feeding on honeydew derived from Bacillus thuringiensis (Bt) rice. Pest Manag. Sci. 74, 1854–1860 (2018).

    CAS  Article  Google Scholar 

  • 8.

    Zhang, L., Guo, R., Fang, Z. & Liu, B. Genetically modified rice Bt-Shanyou63 expressing Cry1Ab/c protein does not harm Daphnia magna. Ecotox. Environ. Safe. 132, 196–201 (2016).

    CAS  Article  Google Scholar 

  • 9.

    Chen, Y. et al. Bt rice expressing Cry1Ab does not stimulate an outbreak of its non-target herbivore, Nilaparvata lugens. Transgen. Res. 21, 279–291 (2012).

    CAS  Article  Google Scholar 

  • 10.

    Akhtar, Z. R. et al. Impact of six transgenic Bacillus thuringiensis rice lines on four nontarget thrips species attacking rice panicles in the paddy field. Environ. Entomol. 42, 173–180 (2013).

    CAS  Article  Google Scholar 

  • 11.

    Zhou, X., Cheng, J. A., Yang, H. U. & Lou, Y. G. Effects of transgenic Bt rice on the population development of Nephotettix cincticeps. Chin. J. Rice Sci. 19, 74–78 (2005).

    Google Scholar 

  • 12.

    Lu, Z. B. et al. Impacts of Bt rice expressing Cry1C or Cry2A protein on the performance of nontarget leafhopper, Nephotettix cincticeps (Hemiptera: Cicadellidae), under laboratory and field conditions. Environ. Entomol. 43, 209–217 (2014).

    CAS  Article  Google Scholar 

  • 13.

    Hagenbucher, S. et al. Pest trade-offs in technology: reduced damage by caterpillars in Bt cotton benefits aphids. Proc. Biol. Sci. 280, 20130042. https://doi.org/10.1098/rspb.2013.0042 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 14.

    Hagenbucher, S., Wackers, F. L. & Romeis, J. Indirect multi-trophic interactions mediated by induced plant resistance: Impact of caterpillar feeding on aphid parasitoids. Biol. Lett. 10, 20130795. https://doi.org/10.1098/rsbl.2013.0795 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 15.

    Wang, X. Y. et al. Bt rice could provide ecological resistance against nontarget planthoppers. Plant Biotechnol. J. 16, 1748–1755 (2018).

    CAS  Article  Google Scholar 

  • 16.

    Chen, G. et al. Odor, not performance, dictates Bemisia tabaci’s selection between healthy and virus infected plants. Front. Physiol8, 146 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 17.

    Xu, H. X., He, X. C., Zheng, X. S., Yang, Y. J. & Lu, Z. X. Influence of rice black streaked dwarf virus on the ecological fitness of non-vector planthopper Nilaparvata lugens (Hemiptera: Delphacidae). Insect Sci. 21, 507–514 (2013).

    Article  Google Scholar 

  • 18.

    Xu, H. X. et al. Effects of transgenic rice infected with SRBSDV on Bt expression and the eological fitness of non-vector brown planthopper Nilaparvata lugens. Sci. Rep. 7, 6328. https://doi.org/10.1038/s41598-017-02218-w (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 19.

    Wang, Q. J. et al. Combined influence of Bt rice and rice dwarf virus on biological parameters of a non-target herbivore, Nephotettix cincticeps (Uhler) (Hemiptera: Cicadellidae). PLoS ONE 12, e0181258 (2017).

    Article  Google Scholar 

  • 20.

    Chen, H. Y. et al. Sequential infection of rice dwarf virus in the internal organs of its insect vector after ingestion of virus. Virus Res. 160, 389–394 (2011).

    CAS  Article  Google Scholar 

  • 21.

    Honda, K. et al. Retention of rice dwarf virus by descendants of pairs of viruliferous vector insects after rearing for 6 years. Phytopathology 97, 712–716 (2007).

    Article  Google Scholar 

  • 22.

    Wei, T. Y. & Li, Y. Rice reoviruses in insect vectors. Annu. Rev. Phytopathol. 54, 99–120 (2016).

    CAS  Article  Google Scholar 

  • 23.

    Zhao, S. S. et al. A viral protein promotes host SAMS1 activity and ethylene production for the benefit of virus infection. elife. 6, e27529. https://doi.org/10.7554/eLife.27529 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Ling, K. C., Tiongco, E. R. & Aguiero, V. M. Rice ragged stunt a new virus disease. Plant. Dis. Rep. 62, 701–705 (1978).

    Google Scholar 

  • 25.

    Hibino, H. et al. Rice grassy stunt virus: A planthopper-borne circular filament. Phytopathology 75, 894–899 (1985).

    Article  Google Scholar 

  • 26.

    Shimizu, T. et al. Strong resistance against rice grassy stunt virus is induced in transgenic rice plants expressing double-stranded RNA of the viral genes for nucleocapsid or movement proteins as targets for RNA interference. Phytopathology 103, 513–519 (2013).

    Article  Google Scholar 

  • 27.

    Dang, C. et al. Does Bt rice pose risks to non-target arthropods? Results of a meta-analysis in China. Plant Biotechnol. J. 15, 1047–1053 (2017).

    CAS  Article  Google Scholar 

  • 28.

    Ge, L. Q., Wu, J. C., Sun, Y. C., Ouyang, F. & Ge, F. Effects of triazophos on biochemical substances of transgenic Bt rice and its nontarget pest Nilaparvata lugens Stål under elevated CO2. Pest. Biochem. Physiol. 107, 188–199 (2013).

    CAS  Article  Google Scholar 

  • 29.

    Ge, L. Q., Sun, Y. C., Ouyang, F., Wu, J. C. & Ge, F. The effects of triazophos applied to transgenic Bt rice on the nutritional indexes, Nlvg expression, and population growth of Nilaparvata lugens Stal under elevated CO2. Pest. Biochem. Physiol. 118, 50–57 (2015).

    CAS  Article  Google Scholar 

  • 30.

    Che, Q. Y., Liu, X. H., Liang, Y. Y., Yang, B. & Ge, F. Effects of transgenic Bt-rice and insecticides on the communitystructure of soil nematodes. J. Plant Protect. 42(5), 724–733 (2015).

    Google Scholar 

  • 31.

    Yang, Y. J. et al. Impacts of nitrogen fertilizer on major insect pests and their predators in transgenic Bt rice lines T2A–1 and T1C–19. Entomol. Exp. Appl. 160, 281–291 (2016).

    CAS  Article  Google Scholar 

  • 32.

    Hill, D. S. Agricultural insect pests of temperate regions and their control. Q. Rev. Biol. 63, 344 (1987).

    Google Scholar 

  • 33.

    Wang, Q. J. et al. Rice dwarf virus infection alters green rice leafhopper host preference and feeding behavior. PLoS ONE 13, e0203364 (2018).

    Article  Google Scholar 

  • 34.

    Sun, X., Yan, M. J., Zhang, A. J. & Wang, M. Q. Transgenic cry1C gene rough rice line T1C–19 does not change the host preferences of the non-target stored product pest, Rhyzopertha dominica (Fabricius) (Coleoptera: Bostrichidae), and its parasitoid wasp, Anisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae). Ecotox. Environ. Safe. 120, 449–456 (2015).

    CAS  Article  Google Scholar 

  • 35.

    Lu, Z. B. et al. Transgenic cry1C or cry2A rice has no adverse impacts on the life-table parameters and population dynamics of the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Pest Manag. Sci. 71, 937–945 (2015).

    ADS  CAS  Article  Google Scholar 

  • 36.

    He, X. C. et al. Ecological fitness of non-vector planthopper Sogatella furcifera on rice plants infected with rice black streaked dwarf virus. Rice Sci. 19, 335–338 (2012).

    Article  Google Scholar 

  • 37.

    Xu, H. X. et al. Effects of SRBSDV-infected rice plants on the fitness of vector and non-vector rice planthoppers. J. Asia-Pac. Entomol. 19, 707–710 (2016).

    Article  Google Scholar 

  • 38.

    Gómez-Torres, M. L., Nava, D. E. & Parra, J. R. P. Life table of Tamarixia radiata (Hymenoptera: Eulophidae) on Diaphorina citri (Hemiptera: Psyllidae) at different temperatures. J. Econ. Entomol. 105, 338–343 (2012).

    Article  Google Scholar 

  • 39.

    Tang, W. et al. Development of insect-resistant transgenic indica rice with a synthetic cry1C* gene. Mol. Breed. 18, 1–10 (2006).

    CAS  Article  Google Scholar 

  • 40.

    Hulting, F. L., Orr, D. B. & Obrycki, J. J. A computer-program for calculation and statistical comparison of intrinsic rates of increase and associated life table parameters. Fla. Entomol. 73, 601–612 (1990).

    Article  Google Scholar 

  • 41.

    Maia, A. D. N., Luiz, A. J. B. & Campanhola, C. Statistical inference on associated fertility life table parameters using Jackknife technique: computational aspects. J. Econ. Entomol. 93, 511–518 (2000).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Antarctic sea ice may not cap carbon emissions as much as previously thought

    A champion of renewable energy