in

De novo transcriptome assembly, functional annotation, and expression profiling of rye (Secale cereale L.) hybrids inoculated with ergot (Claviceps purpurea)

  • 1.

    Geiger, H. & Miedaner, T. Rye breeding. Cereals3, 157–181 (2009).

    Google Scholar 

  • 2.

    Bushuk, W. Rye: Production, Chemistry, and Technology (American Association of Cereal Chemists, Saint Paul, 2001).

    Google Scholar 

  • 3.

    Bauer, E. et al. Towards a whole-genome sequence for rye (Secale cereale L.). Plant J.89, 853–869 (2017).

    CAS  PubMed  Google Scholar 

  • 4.

    Tudzynski, P., Correia, T. & Keller, U. Biotechnology and genetics of ergot alkaloids. Appl. Microbiol. Biotechnol.57, 593–605 (2001).

    CAS  PubMed  Google Scholar 

  • 5.

    Streit, E. et al. Current situation of mycotoxin contamination and co-occurrence in animal feed—focus on Europe. Toxins4, 788–809 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 6.

    Tudzynski, P. & Scheffer, J. Claviceps purpurea: molecular aspects of a unique pathogenic lifestyle. Mol. Plant Pathol.5, 377–388 (2004).

    CAS  PubMed  Google Scholar 

  • 7.

    Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet.10, 57–63 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 8.

    Brown, J. W., Calixto, C. P. & Zhang, R. High-quality reference transcript datasets hold the key to transcript-specific RNA-sequencing analysis in plants. New Phytol.213, 525–530 (2017).

    CAS  PubMed  Google Scholar 

  • 9.

    Watson-Lazowski, A. et al. Plant adaptation or acclimation to rising CO2? Insight from first multigenerational RNA-Seq transcriptome. Glob. Change Biol.22, 3760–3773 (2016).

    ADS  Google Scholar 

  • 10.

    O’Rourke, J. A. et al. An RNA-Seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants. Plant Physiol.161, 705–724 (2013).

    PubMed  Google Scholar 

  • 11.

    Chakraborty, S., Britton, M., Martínez-García, P. & Dandekar, A. M. Deep RNA-Seq profile reveals biodiversity, plant–microbe interactions and a large family of NBS-LRR resistance genes in walnut (Juglans regia) tissues. Amb. Express6, 12 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 12.

    Costa, V., Angelini, C., De Feis, I. & Ciccodicola, A. Uncovering the complexity of transcriptomes with RNA-Seq. BioMed Res. Int. https://doi.org/10.1155/2010/853916 (2010).

    Article  Google Scholar 

  • 13.

    McIntyre, L. M. et al. RNA-seq: technical variability and sampling. BMC Genom.12, 293 (2011).

    CAS  Google Scholar 

  • 14.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 15.

    Wang, S. & Gribskov, M. Comprehensive evaluation of de novo transcriptome assembly programs and their effects on differential gene expression analysis. Bioinformatics33, 327–333 (2017).

    CAS  PubMed  Google Scholar 

  • 16.

    Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol.29, 644–652 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 17.

    Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity. Nat. Protoc.8, 1494 (2013).

    CAS  PubMed  Google Scholar 

  • 18.

    Smith-Unna, R., Boursnell, C., Patro, R., Hibberd, J. M. & Kelly, S. TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome Res.26, 1134–1144 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 19.

    Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics28, 3150–3152 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 20.

    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics31, 3210–3212 (2015).

    PubMed  Google Scholar 

  • 21.

    Mirdita, V. & Miedaner, T. Resistance to Ergot in Self-incompatible Germplasm Resources of Winter Rye. J. Phytopathol.157, 350–355 (2009).

    Google Scholar 

  • 22.

    Mirdita, V., Dhillon, B., Geiger, H. & Miedaner, T. Genetic variation for resistance to ergot (Claviceps purpurea [Fr.] Tul.) among full-sib families of five populations of winter rye (Secale cereale L.). Theor. Appl. Genet.118, 85–90 (2008).

    CAS  PubMed  Google Scholar 

  • 23.

    Anna, K. et al. Ergot infection in winter rye hybrids shows differential contribution of male and female genotypes and environment. Euphytica216, 65 (2020).

    Google Scholar 

  • 24.

    Lindner, R. & Friedel, C. C. A comprehensive evaluation of alignment algorithms in the context of RNA-seq. PLoS ONE7, e52403 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 25.

    Nookaew, I. et al. A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae. Nucleic Acids Res.40, 10084–10097 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 26.

    Benjamin, A. M., Nichols, M., Burke, T. W., Ginsburg, G. S. & Lucas, J. E. Comparing reference-based RNA-Seq mapping methods for non-human primate data. BMC Genom.15, 570 (2014).

    Google Scholar 

  • 27.

    Engelke, T. Ansätze für eine integrierte Bekämpfung des Mutterkorns (Claviceps purpurea [Fr.] Tul.) im Roggen (Cuvillier, Göttingen, 2002).

    Google Scholar 

  • 28.

    Miedaner, T., Mirdita, V., Rodemann, B., Drobeck, T. & Rentel, D. Genetic variation of winter rye cultivars for their ergot (Claviceps purpurea) reaction tested in a field design with minimized interplot interference. Plant Breed.129, 58–62 (2010).

    Google Scholar 

  • 29.

    Smart, M. & Roden, L. C. A small-scale RNA isolation protocol useful for high-throughput extractions from recalcitrant plants. S. Afr. J. Bot.76, 375–379 (2010).

    CAS  Google Scholar 

  • 30.

    30Brown, C. T., Howe, A., Zhang, Q., Pyrkosz, A. B. & Brom, T. H. A reference-free algorithm for computational normalization of shotgun sequencing data. arXiv preprint https://arxiv.org/abs/1203.4802 (2012).

  • 31.

    Pevzner, P. A., Tang, H. & Waterman, M. S. An Eulerian path approach to DNA fragment assembly. Proc. Natl. Acad. Sci.98, 9748–9753 (2001).

    ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  • 32.

    Zhao, Q.-Y. et al. Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study. BMC Bioinform.12, S2 (2011).

    CAS  Google Scholar 

  • 33.

    Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics21, 3674–3676 (2005).

    CAS  Google Scholar 

  • 34.

    Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res.28, 27–30 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 35.

    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics26, 139–140 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 36.

    Biselli, C. et al. Comparative transcriptome profiles of near-isogenic hexaploid wheat lines differing for effective alleles at the 2DL FHB resistance QTL. Frontiers Plant Sci.9, 37 (2018).

    Google Scholar 

  • 37.

    Ma, X., Keller, B., McDonald, B. A., Palma-Guerrero, J. & Wicker, T. Comparative transcriptomics reveals how wheat responds to infection by Zymoseptoria tritici. Mol. Plant Microbe Interact.31, 420–431 (2018).

    CAS  PubMed  Google Scholar 

  • 38.

    Li, Y. et al. Transcriptome analysis identifies candidate genes and functional pathways controlling the response of two contrasting barley varieties to powdery mildew infection. Int. J. Mol. Sci.21, 151 (2020).

    CAS  Google Scholar 

  • 39.

    Haseneyer, G. et al. From RNA-seq to large-scale genotyping-genomics resources for rye (Secale cereale L.). BMC Plant Biol.11, 131 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 40.

    Hill, C. B. et al. De novo transcriptome assembly and analysis of differentially expressed genes of two barley genotypes reveal root-zone-specific responses to salt exposure. Sci. Rep.6, 31558 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 41.

    Liu, Y.-J. et al. Transcriptome analysis of wheat seedling and spike tissues in the hybrid Jingmai 8 uncovered genes involved in heterosis. Planta247, 1307–1321 (2018).

    CAS  PubMed  Google Scholar 

  • 42.

    Duan, J., Xia, C., Zhao, G., Jia, J. & Kong, X. Optimizing de novo common wheat transcriptome assembly using short-read RNA-Seq data. BMC Genom.13, 392 (2012).

    CAS  Google Scholar 

  • 43.

    Vicente, R. et al. De novo transcriptome analysis of durum wheat flag leaves provides new insights into the regulatory response to elevated CO2 and high temperature. Frontiers Plant Sci.10, 1605 (2019).

    Google Scholar 

  • 44.

    Kang, S.-H., Lee, J.-Y., Lee, T.-H., Park, S.-Y. & Kim, C.-K. novo transcriptome assembly of the Chinese pearl barley, adlay, by full-length isoform and short-read RNA sequencing. PLoS ONE13, e0208344 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 45.

    Fox, S. E. et al. De novo transcriptome assembly and analyses of gene expression during photomorphogenesis in diploid wheat Triticum monococcum. PLoS ONE9, e96855 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 46.

    Gullner, G., Komives, T., Király, L. & Schröder, P. Glutathione S-transferase enzymes in plant-pathogen interactions. Frontiers in plant science9, 1836 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 47.

    Bienert, M. D., Baijot, A. & Boutry, M. Plant ABC Transporters 137–162 (Springer, Berlin, 2014).

    Google Scholar 

  • 48.

    Xin, M. et al. Cloning and characterization of a novel UDP-glycosyltransferase gene induced by DON from wheat. J. Integr. Agric.14, 830–838 (2015).

    Google Scholar 

  • 49.

    Oh, B.-J. et al. A cytochrome P450 gene is differentially expressed in compatible and incompatible interactions between pepper (Capsicum annuum) and the anthracnose fungus Colletotrichum gloeosporioides. Mol. Plant-Microbe Interact.12, 1044–1052 (1999).

    CAS  PubMed  Google Scholar 

  • 50.

    Silveira, R. L., Stoyanov, S. R., Gusarov, S., Skaf, M. S. & Kovalenko, A. Plant biomass recalcitrance: effect of hemicellulose composition on nanoscale forces that control cell wall strength. J. Am. Chem. Soc.135, 19048–19051 (2013).

    CAS  PubMed  Google Scholar 

  • 51.

    Volpi, C. et al. Claviceps purpurea expressing polygalacturonases escaping PGIP inhibition fully infects PvPGIP2 wheat transgenic plants but its infection is delayed in wheat transgenic plants with increased level of pectin methyl esterification. Plant Physiol. Biochem.73, 294–301 (2013).

    CAS  PubMed  Google Scholar 

  • 52.

    An, S. H. et al. Pepper pectin methylesterase inhibitor protein CaPMEI1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance. Planta228, 61–78 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 53.

    Volpi, C. et al. The ectopic expression of a pectin methyl esterase inhibitor increases pectin methyl esterification and limits fungal diseases in wheat. Mol. Plant Microbe Interact.24, 1012–1019 (2011).

    CAS  PubMed  Google Scholar 

  • 54.

    Lionetti, V. et al. Three pectin methylesterase inhibitors protect cell wall integrity for Arabidopsis immunity to Botrytis. Plant Physiol.173, 1844–1863 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 55.

    Lionetti, V. et al. Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea. Plant Physiol.143, 1871–1880 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 56.

    Tundo, S. et al. Pyramiding PvPGIP2 and TAXI-III but not PvPGIP2 and PMEI enhances resistance against Fusarium graminearum. Mol. Plant Microbe Interact.29, 629–639 (2016).

    CAS  PubMed  Google Scholar 

  • 57.

    Prabhu, S. A. et al. Immuno-affinity purification of PglPGIP1, a polygalacturonase-inhibitor protein from pearl millet: studies on its inhibition of fungal polygalacturonases and role in resistance against the downy mildew pathogen. Mol. Biol. Rep.42, 1123–1138 (2015).

    CAS  PubMed  Google Scholar 

  • 58.

    Oeser, B., Heidrich, P. M., Müller, U., Tudzynski, P. & Tenberge, K. B. Polygalacturonase is a pathogenicity factor in the Claviceps purpurea/rye interaction. Fungal Genet. Biol.36, 176–186 (2002).

    CAS  PubMed  Google Scholar 

  • 59.

    Lionetti, V., Cervone, F. & Bellincampi, D. Methyl esterification of pectin plays a role during plant–pathogen interactions and affects plant resistance to diseases. J. Plant Physiol.169, 1623–1630 (2012).

    CAS  PubMed  Google Scholar 

  • 60.

    Malinovsky, F. G., Fangel, J. U. & Willats, W. G. The role of the cell wall in plant immunity. Frontiers Plant Sci.5, 178 (2014).

    Google Scholar 

  • 61.

    Bacete, L., Mélida, H., Miedes, E. & Molina, A. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. Plant J.93, 614–636 (2018).

    CAS  PubMed  Google Scholar 

  • 62.

    Hückelhoven, R. Cell wall–associated mechanisms of disease resistance and susceptibility. Annu. Rev. Phytopathol.45, 101–127 (2007).

    PubMed  Google Scholar 

  • 63.

    Li, S. et al. Arabidopsis COBRA-LIKE 10, a GPI-anchored protein, mediates directional growth of pollen tubes. Plant J.74, 486–497 (2013).

    CAS  PubMed  Google Scholar 

  • 64.

    Tudzynski, P., Tenberge, K. & Oeser, B. Claviceps purpurea. Pathog. Host Specif. Plant Dis. Histopathol. Biochem. Genet. Mol. Bases2, 161–187 (1995).

    Google Scholar 

  • 65.

    Miedaner, T. & Geiger, H. H. Biology, genetics, and management of ergot (Claviceps spp.) in rye, sorghum, and pearl millet. Toxins7, 659–678 (2015).


  • Source: Ecology - nature.com

    Shrinking deep learning’s carbon footprint

    3 Questions: Asegun Henry on five “grand thermal challenges” to stem the tide of global warming