in

Decline of six native mason bee species following the arrival of an exotic congener

  • 1.

    Brown, W. L. & Wilson, E. O. Character displacement. Syst. Zool. 5, 49 (1956).

    Article  Google Scholar 

  • 2.

    Jeffries, M. & Lawton, J. Enemy free space and the structure of ecological communities. Biol. J. Linn. Soc. 23, 269–286 (1984).

    Article  Google Scholar 

  • 3.

    Reynolds, J. D. Crayfish extinctions and crayfish plague in central Ireland. Biol. Conserv. 45, 279–285 (1988).

    Article  Google Scholar 

  • 4.

    Stephen, W. P. Solitary bees in North American agriculture: A perspective. In For non-native crops, whence pollinators of the future (eds Strickler, K. & Cane, J. H.) 41–66 (Entomological Society of America, 2003).

  • 5.

    Goulson, D. & Hanley, M. E. Distribution and forage use of exotic bumblebees in South Island New Zealand. N. Z. J. Ecol. 28, 225–232 (2004).

    Google Scholar 

  • 6.

    Morales, C. L. & Aizen, M. A. Invasive mutualisms and the structure of plant–pollinator interactions in the temperate forests of north-west Patagonia. Argentina. J. Ecol. 94, 171–180 (2006).

    Article  Google Scholar 

  • 7.

    Vergara, C. H. Environmental impact of exotic bees introduced for crop pollination. In Bee Pollination in Agricultural Ecosystems (eds James, R. R. & Pitts-Singer, T. L.) 145–165 (Oxford University Press, Oxford, 2008).

    Google Scholar 

  • 8.

    Roberts, R. B. The nesting biology, behavior and immature stages of Lithurge chrysurus, an adventitious wood-boring bee in New Jersey (Hymenoptera: Megachilidae). J. Kans. Entomol. Soc. 51, 735–745 (1978).

    Google Scholar 

  • 9.

    Mangum, W. A. & Brooks, R. W. First records of Megachile (Callomegachile) sculpturalis Smith (Hymenoptera: Megachilidae) in the Continental United States. J. Kans. Entomol. Soc. 70, 140–142 (1997).

    Google Scholar 

  • 10.

    Russo, L. Positive and negative impacts of non-native bee species around the world. Insects 7, 69 (2016).

    PubMed Central  Article  Google Scholar 

  • 11.

    Goulson, D. Effects of introduced bees on native ecosystems. Annu. Rev. Ecol. Evol. Syst. 34, 1–26 (2003).

    Article  Google Scholar 

  • 12.

    Inoue, M. N., Yokoyama, J. & Washitani, I. Displacement of Japanese native bumblebees by the recently introduced Bombus terrestris (L.) (Hymenoptera: Apidae). J. Insect Conserv. 12, 135–146 (2008).

    Article  Google Scholar 

  • 13.

    Morales, C. L., Arbetman, M. P., Cameron, S. A. & Aizen, M. A. Rapid ecological replacement of a native bumble bee by invasive species. Front. Ecol. Environ. 11, 529–534 (2013).

    Article  Google Scholar 

  • 14.

    Schmid-Hempel, R. et al. The invasion of southern South America by imported bumblebees and associated parasites. J. Anim. Ecol. 83, 823–837 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Cane, J. H. Exotic non-social bees (Hymenoptera: Apoidea) in North America: Ecological implications. In For non-native crops, whence pollinators of the future (eds Strickler, K. & Cane, J. H.) 113–126 (Entomological Society of America, 2003).

  • 16.

    Paini, D. R. Impact of the introduced honey bee (Apis mellifera) (Hymenoptera: Apidae) on native bees: A review. Austral Ecol. 29, 399–407 (2004).

    Article  Google Scholar 

  • 17.

    Mallinger, R. E., Gaines-Day, H. R. & Gratton, C. Do managed bees have negative effects on wild bees? A systematic review of the literature. PLoS ONE 12, e0189268 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 18.

    Ascher, J. S. & Pickering, J. Apoidea species—identification guide—Discover Life. https://www.discoverlife.org/mp/20q?guide=Apoidea_species&flags=HAS: (2020).

  • 19.

    Batra, S. Osmia cornifrons and Pithitis smaragdula, two Asian bees introduced into the United States for crop pollination. in Proceedings 4th International Symposium on Pollination. Maryland Agricultural Experimental Station Miscellaneous Publication (1978).

  • 20.

    Droege, S. USGS PWRC – Native Bee Inventory and Monitoring Lab (BIML). https://doi.org/10.15468/6AUTVB (2020).

  • 21.

    Cane, J. H., Griswold, T. & Parker, F. D. Substrates and materials used for nesting by North American Osmia bees (Hymenoptera: Apiformes: Megachilidae). Ann. Entomol. Soc. Am. 100, 350–358 (2007).

    Article  Google Scholar 

  • 22.

    Droege, S., Engler, J., Sellers, E. & O’Brien, L. National Protocol Framework for the Inventory and Monitoring of Bees (U.S. Fish and Wildlife Service, Washington, D.C., 2016).

    Google Scholar 

  • 23.

    LeBuhn, G., Droege, S., Connor, E., Gemmill-Herren, B. & Azzu, N. Protocol to Detect and Monitor Pollinator Communities: Guidance for Practitioners (Food and Agriculture Organization of the United Nations, Rome, 2016).

    Google Scholar 

  • 24.

    Droege, S. Impact of color and size of bowl trap on numbers of bees captured. J. Insect Conserv. https://doi.org/10.1007/s10841-016-9914-6 (2006).

    Article  Google Scholar 

  • 25.

    Gonzalez, V. H. et al. Effect of pan trap size on the diversity of sampled bees and abundance of bycatch. J. Insect Conserv. https://doi.org/10.1007/s10841-020-00224-4 (2020).

    Article  Google Scholar 

  • 26.

    Wilson, J. S. et al. Sampling bee communities using pan traps: Alternative methods increase sample size. J. Insect Conserv. 20, 919–922 (2016).

    Article  Google Scholar 

  • 27.

    Westphal, C. et al. Measuring bee diversity in different European habitats and biogeographical regions. Ecol. Monogr. 78, 653–671 (2008).

    Article  Google Scholar 

  • 28.

    Greenleaf, S. S., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596 (2007).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Frey, B. J. & Dueck, D. Clustering by passing messages between data points. Science 315, 972–976 (2007).

    ADS  MathSciNet  CAS  PubMed  MATH  Article  PubMed Central  Google Scholar 

  • 30.

    Shapiro, L. H., Tepedino, V. J. & Minckley, R. L. Bowling for bees: optimal sample number for “bee bowl” sampling transects. J. Insect Conserv. 18, 1105–1113 (2014).

    Article  Google Scholar 

  • 31.

    Joe, H. & Zhu, R. Generalized poisson distribution: The property of mixture of poisson and comparison with negative binomial distribution. Biom. J. 47, 219–229 (2005).

    MathSciNet  PubMed  MATH  Article  PubMed Central  Google Scholar 

  • 32.

    Didham, R. K. et al. Interpreting insect declines: Seven challenges and a way forward. Insect Conserv. Divers. 13, 103–114 (2020).

    Article  Google Scholar 

  • 33.

    Maeta, Y. Comparative studies on the biology of bees of the genus Osmia of Japan, with special reference to their management for pollinations of crops (Hymenoptera: Megachilidae). Bull. Tohoku Nat. Agric. Exp. Stn. 57, 1–221 (1978).

    Google Scholar 

  • 34.

    Bosch, J. & Kemp, W. P. How to Manage the Blue Orchard Bee: As an Orchard Pollinator (Sustainable Agriculture Network, San José, 2001).

    Google Scholar 

  • 35.

    Kraemer, M. E., Favi, F. D. & Niedziela, C. E. Nesting and pollen preference of Osmia lignaria lignaria (Hymenoptera: Megachilidae) in Virginia and North Carolina orchards. Environ. Entomol. 43, 932–941 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    Tompkins, D. M., White, A. R. & Boots, M. Ecological replacement of native red squirrels by invasive greys driven by disease. Ecol. Lett. 6, 189–196 (2003).

    Article  Google Scholar 

  • 37.

    Prenter, J., MacNeil, C., Dick, J. T. A. & Dunn, A. M. Roles of parasites in animal invasions. Trends Ecol. Evol. 19, 385–390 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Stephen, W. P., Vandenberg, J. D. & Fichter, B. L. Etiology and epizootiology of chalkbrood in the alfalfa leafcutting bee, Megachile rotundata, with notes on Ascosphaera species. Oregon State Univ. Agric. Exp. Stn. Bull. 653, 1–10 (1981).

    Google Scholar 

  • 39.

    Hedtke, S. M., Blitzer, E. J., Montgomery, G. A. & Danforth, B. N. Introduction of non-native pollinators can lead to trans-continental movement of bee-associated fungi. PLoS ONE 10, e0130560 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 40.

    Klinger, E. G. Virulence Evolution of Fungal Pathogens in Social and Solitary Bees with an Emphasis on Multiple Infections. (Utah State University, Logan 2015).

    Google Scholar 

  • 41.

    Kamijo, K. A revision of the species of the Monodontomerinae occurring in Japan (Hymenoptera: Chlacidoidea) [Taxonomic Studies on the Torymidae of Japan, 2]. Insecta Matsumurana 26, 89–98 (1963).

    Google Scholar 

  • 42.

    Kamijo, K. Description of five new species of Eulophinae from Japan and other notes (Hymenoptera: Chalcidoidea). Insecta Matsumurana 28, 69–78 (1965).

    Google Scholar 

  • 43.

    Grissell, E. Discovery of Monodontomerus osmiae Kamijo (Hymenoptera: Torymidae) in the New World. Proc. Entomol. Soc. Wash. 105, 243–245 (2003).

    Google Scholar 

  • 44.

    Majka, C. G., Philips, T. K. & Sheffield, C. Ptinus sexpunctatus Panzer (Coleoptera: Anobiidae, Ptininae) newly recorded in North America. Entomol. News 118, 73–76 (2007).

    Article  Google Scholar 

  • 45.

    Torchin, M. E. & Mitchell, C. E. Parasites, pathogens, and invasions by plants and animals. Front. Ecol. Environ. 2, 183–190 (2004).

    Article  Google Scholar 

  • 46.

    MacIvor, J. S. & Packer, L. ‘Bee hotels’ as tools for native pollinator conservation: A premature verdict? PLoS ONE 10, e0122126 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 47.

    Park, Y. L. et al. Nest-to-nest dispersal of Chaetodactylus krombeini (Acari, Chaetodactylidae) associated with Osmia cornifrons (Hym., Megachilidae). J. Appl. Entomol. 133, 174–180 (2009).

    Article  Google Scholar 

  • 48.

    Maeta, Y. & Kitamura, T. Studies on the apple pollination by Osmia. II. Characteristics and underlying problems in utilizing Osmia. Kontyu 33, 17–34 (1965).

  • 49.

    Kobayashi, M. Problems in the utilisation of Eristalis cerealis as pollinator. Shokubutsu Boeki 26, 473–478 (1972).

    Google Scholar 

  • 50.

    Biddinger, D. J. et al. Development of the mason bee, Osmia cornifrons, as an alternative pollinator to honey bees and as a targeted delivery system for biocontrol agents in the management of fire blight. Penn Fruit News 90, 35–44 (2009).

    Google Scholar 

  • 51.

    West, T. P. & McCutcheon, T. W. Evaluating Osmia cornifrons as pollinators of highbush blueberry. Int. J. Fruit Sci. 9, 115–125 (2009).

    Article  Google Scholar 

  • 52.

    Portman, Z. M., Bruninga-Socolar, B. & Cariveau, D. P. The state of bee monitoring in the United States: a call to refocus away from bowl traps and towards more effective methods. Ann. Entomol. Soc. Am. https://doi.org/10.1093/aesa/saaa010 (2020).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Saudi Arabia faces increased heat, humidity, precipitation extremes by mid-century

    Technique reveals deeper insights into the makeup of nacre, a natural material