in

Decrease in social cohesion in a colonial seabird under a perturbation regime

  • 1.

    Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).

    Article  Google Scholar 

  • 2.

    Dai, L., Korolev, K. S. & Gore, J. Relation between stability and resilience determines the performance of early warning signals under different environmental drivers. Proc. Natl. Acad. Sci. 112, 10056–10061 (2015).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Dakos, V., Carpenter, S. R., van Nes, E. H. & Scheffer, M. Resilience indicators: Prospects and limitations for early warnings of regime shifts. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130263–20130263 (2014).

    Article  Google Scholar 

  • 4.

    Colchero, F. et al. The diversity of population responses to environmental change. Ecol. Lett. https://doi.org/10.1111/ele.13195 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 5.

    Coulson, T. et al. Data from: Modeling adaptive and nonadaptive responses of populations to environmental change. Am. Nat. https://doi.org/10.5061/dryad.4c117 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 6.

    Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1172–1185 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Fernández-Chacón, A. et al. When to stay, when to disperse and where to go: Survival and dispersal patterns in a spatially structured seabird population. Ecography 36, 1117–1126 (2013).

    Article  Google Scholar 

  • 8.

    Sterk, M., van de Leemput, I. A. & Peeters, E. T. How to conceptualize and operationalize resilience in socio-ecological systems?. Curr. Opin. Environ. Sustain. 28, 108–113 (2017).

    Article  Google Scholar 

  • 9.

    Brand, F. S. & Jax, K. Focusing the meaning(s) of resilience: Resilience as a descriptive concept and a boundary object. Ecol. Soc. 12, 23 (2007).

    Article  Google Scholar 

  • 10.

    Barrett, L., Henzi, S. P. & Lusseau, D. Taking sociality seriously: The structure of multi-dimensional social networks as a source of information for individuals. Philos. Trans. R. Soc. B Biol. Sci. 367, 2108–2118 (2012).

    Article  Google Scholar 

  • 11.

    Centola, D. How Behavior Spreads: The Science of Complex Contagions. (2018).

  • 12.

    Firth, J. A. Considering complexity: Animal social networks and behavioural contagions. Trends Ecol. Evol. 35, 100–104 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Kerth, G., Perony, N. & Schweitzer, F. Bats are able to maintain long-term social relationships despite the high fission–fusion dynamics of their groups. Proc. R. Soc. B Biol. Sci. 278, 2761–2767 (2011).

    Article  Google Scholar 

  • 14.

    Rosenthal, S. B., Twomey, C. R., Hartnett, A. T., Wu, H. S. & Couzin, I. D. Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. Proc. Natl. Acad. Sci. 112, 4690–4695 (2015).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Snijders, L., Blumstein, D. T., Stanley, C. R. & Franks, D. W. Animal social network theory can help wildlife conservation. Trends Ecol. Evol. 32, 567–577 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Webber, Q. M. R. & Vander Wal, E. An evolutionary framework outlining the integration of individual social and spatial ecology. J. Anim. Ecol. 87, 113–127 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Sueur, C. & Mery, F. Social Interaction in Animals: Linking Experimental Approach and Social Network Analysis (Frontiers Media SA, Lausanne, 2017).

    Google Scholar 

  • 18.

    LaBarge, L. R., Allan, A. T. L., Berman, C. M., Margulis, S. W. & Hill, R. A. Reactive and pre-emptive spatial cohesion in a social primate. Anim. Behav. 163, 115–126 (2020).

    Article  Google Scholar 

  • 19.

    Firth, J. A. et al. Wild birds respond to flockmate loss by increasing their social network associations to others. Proc. R. Soc. B Biol. Sci. 284, 20170299 (2017).

    Article  Google Scholar 

  • 20.

    Farine, D. R. Structural trade-offs can predict rewiring in shrinking social networks. J. Anim. Ecol. 1365–2656, 13140. https://doi.org/10.1111/1365-2656.13140 (2019).

    Article  Google Scholar 

  • 21.

    Maldonado-Chaparro, A. A., Alarcón-Nieto, G., Klarevas-Irby, J. A. & Farine, D. R. Experimental disturbances reveal group-level costs of social instability. Proc. R. Soc. B Biol. Sci. 285, 20181577 (2018).

    Article  Google Scholar 

  • 22.

    Puga-Gonzalez, I., Sosa, S. & Sueur, C. Social style and resilience of macaques’ networks, a theoretical investigation. Primates 60, 233–246 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Williams, R. & Lusseau, D. A killer whale social network is vulnerable to targeted removals. Biol. Lett. 2, 497–500 (2006).

    PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Oro, D. Perturbation, Social Feedbacks, and Population Dynamics in Social Animals (Oxford Univerity Press, Oxford, 2020).

    Google Scholar 

  • 25.

    Firth, J. A. & Sheldon, B. C. Experimental manipulation of avian social structure reveals segregation is carried over across contexts. Proc. R. Soc. B Biol. Sci. 282, 20142350–20142350 (2015).

    Article  Google Scholar 

  • 26.

    Genton, C. et al. How Ebola impacts social dynamics in gorillas: A multistate modelling approach. J. Anim. Ecol. 84, 166–176 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Leu, S. T., Farine, D. R., Wey, T. W., Sih, A. & Bull, C. M. Environment modulates population social structure: Experimental evidence from replicated social networks of wild lizards. Anim. Behav. 111, 23–31 (2016).

    Article  Google Scholar 

  • 28.

    Silk, J., Cheney, D. & Seyfarth, R. A practical guide to the study of social relationships: A practical guide to the study of social relationships. Evol. Anthropol. Issues News Rev. 22, 213–225 (2013).

    Article  Google Scholar 

  • 29.

    Brown, C. R. The ecology and evolution of colony-size variation. Behav. Ecol. Sociobiol. 70, 1613–1632 (2016).

    Article  Google Scholar 

  • 30.

    Rolland, C., Danchin, E. & de Fraipont, M. The evolution of coloniality in birds in relation to food, habitat, predation, and life-history traits: A comparative analysis. Am. Nat. 151, 514–529 (1998).

    CAS  PubMed  Article  Google Scholar 

  • 31.

    Shizuka, D. et al. Across-year social stability shapes network structure in wintering migrant sparrows. Ecol. Lett. 17, 998–1007 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Brandl, H. B., Griffith, S. C., Farine, D. R. & Schuett, W. Wild zebra finches that nest synchronously have long-term stable social ties. J. Anim. Ecol. 1365–2656, 13082. https://doi.org/10.1111/1365-2656.13082 (2019).

    Article  Google Scholar 

  • 33.

    Moreno, J. L. Who Shall Survive?: A New Approach to the Problem of Human Interrelations (Nervous and Mental Disease Publishing Co, New York, 1934). .

  • 34.

    Scott, J. Social network analysis. Sociology 22, 109–127 (1988).

    Article  Google Scholar 

  • 35.

    Croft, D. P., James, R. & Krause, J. Exploring Animal Social Networks (Princeton University Press, Princeton, 2008).

    Google Scholar 

  • 36.

    Farine, D. R. & Whitehead, H. Constructing, conducting and interpreting animal social network analysis. J. Anim. Ecol. 84, 1144–1163 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Ward, A. & Webster, M. Sociality: The Behaviour of Group-Living Animals (Springer, New York, 2016).

    Google Scholar 

  • 38.

    Whitehead, H. Analyzing Animal Societies Quantitative Methods for Vertebrate Social Analysis. (2014).

  • 39.

    James, R., Croft, D. P. & Krause, J. Potential banana skins in animal social network analysis. Behav. Ecol. Sociobiol. 63, 989–997 (2009).

    Article  Google Scholar 

  • 40.

    Hasenjager, M. J. & Dugatkin, L. A. Chapter three—social network analysis in behavioral ecology. In Advances in the Study of Behavior (ed. Naguib, M.) 47, 39–114 (Academic Press, New York, 2015).

    Google Scholar 

  • 41.

    Payo-Payo, A. et al. Predator arrival elicits differential dispersal, change in age structure and reproductive performance in a prey population. Sci. Rep. 8, 1971 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Martínez-Abraín, A., Oro, D., Forero, M. G. & Conesa, D. Modeling temporal and spatial colony-site dynamics in a long-lived seabird. Popul. Ecol. 45, 133–139 (2003).

    Article  Google Scholar 

  • 43.

    Genovart, M., Oro, D. & Tenan, S. Immature survival, fertility, and density dependence drive global population dynamics in a long-lived species. Ecology 99, 2823–2832 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Almaraz, P. & Oro, D. Size-mediated non-trophic interactions and stochastic predation drive assembly and dynamics in a seabird community. Ecology 92, 1948–1958 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Shizuka, D. & Johnson, A. E. How demographic processes shape animal social networks. Behav. Ecol. https://doi.org/10.1093/beheco/arz083 (2019).

    Article  Google Scholar 

  • 46.

    Francesiaz, C. et al. Familiarity drives social philopatry in an obligate colonial breeder with weak interannual breeding-site fidelity. Anim. Behav. 124, 125–133 (2017).

    Article  Google Scholar 

  • 47.

    Cantor, M. & Farine, D. R. Simple foraging rules in competitive environments can generate socially structured populations. Ecol. Evol. 8, 4978–4991 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Cantor, M. et al. Animal social networks: Revealing the causes and implications of social structure in ecology and evolution. https://osf.io/m62gb (2019). https://doi.org/10.32942/osf.io/m62gb.

  • 49.

    Anderson, D. J. & Hodum, P. J. Predator behavior favors clumped nesting in an oceanic seabird. Ecology 74, 2462–2464 (1993).

    Article  Google Scholar 

  • 50.

    Oro, D. Colonial seabird nesting in dense and small sub-colonies: An advantage against aerial predation. Condor 98, 848–850 (1996).

    Article  Google Scholar 

  • 51.

    Gil, M. A., Hein, A. M., Spiegel, O., Baskett, M. L. & Sih, A. Social information links individual behavior to population and community dynamics. Trends Ecol. Evol. 33, 535–548 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    Lewanzik, D., Sundaramurthy, A. K. & Goerlitz, H. R. Insectivorous bats integrate social information about species identity, conspecific activity and prey abundance to estimate cost–benefit ratio of interactions. J. Anim. Ecol. 88, 1462–1473 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Doligez, B. Public information and breeding habitat selection in a wild bird population. Science 297, 1168–1170 (2002).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 54.

    Payo-Payo, A. et al. Colonisation in social species: The importance of breeding experience for dispersal in overcoming information barriers. Sci. Rep. 7, 20 (2017).

    ADS  Article  CAS  Google Scholar 

  • 55.

    Arganda, S., Pérez-Escudero, A. & de Polavieja, G. G. A common rule for decision making in animal collectives across species. Proc. Natl. Acad. Sci. 109, 20508–20513 (2012).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 56.

    Pérez-Escudero, A. & de Polavieja, G. G. Adversity magnifies the importance of social information in decision-making. J. R. Soc. Interface 14, 20170748 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Maldonado-Chaparro, A. A., Blumstein, D. T., Armitage, K. B. & Childs, D. Z. Transient LTRE analysis reveals the demographic and trait-mediated processes that buffer population growth. Ecol. Lett. 21, 1693–1703 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 58.

    Pruitt, J. N. et al. Social tipping points in animal societies. Proc. R. Soc. B 285, 20181282 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Dall, S. R. X., Houston, A. I. & McNamara, J. M. The behavioural ecology of personality: Consistent individual differences from an adaptive perspective. Ecol. Lett. 7, 734–739 (2004).

    Article  Google Scholar 

  • 60.

    Doering, G. N., Scharf, I., Moeller, H. V. & Pruitt, J. N. Social tipping points in animal societies in response to heat stress. Nat. Ecol. Evol. 2, 1298–1305 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 61.

    Wolf, M., van Doorn, G. S., Leimar, O. & Weissing, F. J. Life-history trade-offs favour the evolution of animal personalities. Nature 447, 581–584 (2007).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Clobert, J., Le Galliard, J.-F., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    Cote, J., Clobert, J., Brodin, T., Fogarty, S. & Sih, A. Personality-dependent dispersal: Characterization, ontogeny and consequences for spatially structured populations. Philos. Trans. R. Soc. B Biol. Sci. 365, 4065–4076 (2010).

    CAS  Article  Google Scholar 

  • 64.

    Fogarty, S., Cote, J. & Sih, A. Social personality polymorphism and the spread of invasive species: A model. Am. Nat. 177, 273–287 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 65.

    O’Shea-Wheller, T. A., Masuda, N., Sendova-Franks, A. B. & Franks, N. R. Variability in individual assessment behaviour and its implications for collective decision-making. Proc. R. Soc. B Biol. Sci. 284, 20162237 (2017).

    Article  Google Scholar 

  • 66.

    Nimmo, D. G., Mac Nally, R., Cunningham, S. C., Haslem, A. & Bennett, A. F. Vive la résistance: Reviving resistance for 21st century conservation. Trends Ecol. Evol. 30, 516–523 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 67.

    IUCN. Larus audouinii: BirdLife International: The IUCN Red List of Threatened Species 2018: e.T22694313A132541241. (2018). https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22694313A132541241.en.

  • 68.

    Martínez-Abraín, A., Jiménez, J. & Oro, D. Pax Romana: ‘refuge abandonment’ and spread of fearless behavior in a reconciling world. Anim. Conserv. 22, 3–13 (2019).

    Article  Google Scholar 

  • 69.

    Genovart, M., Jover, L., Ruiz, X. & Oro, D. Offspring sex ratios in subcolonies of Audouin’s gull, Larus audouinii, with differential breeding performance. Can. J. Zool. 81, 905–910 (2003).

    Article  Google Scholar 

  • 70.

    Oro, D. Audouin’s gull account. In The Birds of Western Palearctic (ed. Ogilvie, M. A.) 47–61 (Oxford University Press, Oxford, 1998).

    Google Scholar 

  • 71.

    Genovart, M., Pradel, R. & Oro, D. Exploiting uncertain ecological fieldwork data with multi-event capture-recapture modelling: An example with bird sex assignment. J. Anim. Ecol. 81, 970–977 (2012).

    PubMed  Article  Google Scholar 

  • 72.

    Oro, D., Tavecchia, G. & Genovart, M. Comparing demographic parameters for philopatric and immigrant individuals in a long-lived bird adapted to unstable habitats. Oecologia 165, 935–945 (2010).

    ADS  PubMed  Article  Google Scholar 

  • 73.

    Hoff, P. D. Additive and multiplicative effects network models. arXiv:180708038 Stat (2018).

  • 74.

    Minhas, S., Hoff, P. D. & Ward, M. D. Inferential approaches for network analyses: AMEN for latent factor models. arXiv:161100460 Stat (2016).

  • 75.

    Warner, R. M., Kenny, D. A. & Stoto, M. A new round robin analysis of variance for social interaction data. J. Pers. Soc. Psychol. 37, 1742–1757 (1979).

    Article  Google Scholar 

  • 76.

    Gimenez, O. et al. Inferring animal social networks with imperfect detection. Ecol. Model. 401, 69–74 (2019).

    Article  Google Scholar 

  • 77.

    Hoppitt, W. J. E. & Farine, D. R. Association indices for quantifying social relationships: How to deal with missing observations of individuals or groups. Anim. Behav. 136, 227–238 (2018).

    Article  Google Scholar 

  • 78.

    Farine, D. R. Animal social network inference and permutations for ecologists in R using asnipe. Methods Ecol. Evol. 4, 1187–1194 (2013).

    Article  Google Scholar 

  • 79.

    Warnes,GR, Bolker, G, Gorjanc, G & Grothendieck, G. gdata: Various R programming tools for data manipulation. R package version (2014).

  • 80.

    Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal 20, 20 (2006).

    Google Scholar 

  • 81.

    Farine, D. R. A guide to null models for animal social network analysis. Methods Ecol. Evol. 8, 1309–1320 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 82.

    Ginsberg, J. R. & Young, T. P. Measuring association between individuals or groups in behavioural studies. Anim. Behav. 44, 377–379 (1992).

    Article  Google Scholar 

  • 83.

    Cairns, S. J. & Schwager, S. J. A comparison of association indices. Anim. Behav. 35, 1454–1469 (1987).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Saudi Arabia faces increased heat, humidity, precipitation extremes by mid-century

    Technique reveals deeper insights into the makeup of nacre, a natural material