in

Deep amoA amplicon sequencing reveals community partitioning within ammonia-oxidizing bacteria in the environmentally dynamic estuary of the River Elbe

[adace-ad id="91168"]
  • 1.

    Kowalchuk, G. A. & Stephen, J. R. Ammonia-oxidizing bacteria: A model for molecular microbial ecology. Annu. Rev. Microbiol. 55, 485–529. https://doi.org/10.1146/annurev.micro.55.1.485 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 2.

    Koops, H.-P. & Pommerening-Röser, A. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol. Ecol. 37, 1–9. https://doi.org/10.1111/j.1574-6941.2001.tb00847.x (2001).

    CAS  Article  Google Scholar 

  • 3.

    Monteiro, M., Seneca, J. & Magalhaes, C. The history of aerobic ammonia oxidizers: From the first discoveries to today. J. Microbiol. 52, 537–547. https://doi.org/10.1007/s12275-014-4114-0 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 4.

    Lehtovirta-Morley, L. E. Ammonia oxidation: Ecology, physiology, biochemistry and why they must all come together. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fny058 (2018).

    Article  PubMed  Google Scholar 

  • 5.

    Könneke, M. et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543. https://doi.org/10.1038/nature03911 (2005).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 6.

    Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504. https://doi.org/10.1038/nature16461 (2015).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 7.

    van Kessel, M. A. H. J. et al. Complete nitrification by a single microorganism. Nature 528, 555. https://doi.org/10.1038/nature16459 (2015).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 8.

    Leininger, S. et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442, 806–809. https://doi.org/10.1038/nature04983 (2006).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 9.

    Martens-Habbena, W., Berube, P. M., Urakawa, H., de la Torre, J. R. & Stahl, D. A. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461, 976–979. https://doi.org/10.1038/nature08465 (2009).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 10.

    Prosser, J. I. & Nicol, G. W. Archaeal and bacterial ammonia-oxidisers in soil: The quest for niche specialisation and differentiation. Trends Microbiol. 20, 523–531. https://doi.org/10.1016/j.tim.2012.08.001 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 11.

    Shen, J. P., Zhang, L. M., Zhu, Y. G., Zhang, J. B. & He, J. Z. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environ. Microbiol. 10, 1601–1611. https://doi.org/10.1111/j.1462-2920.2008.01578.x (2008).

    CAS  Article  PubMed  Google Scholar 

  • 12.

    Tourna, M., Freitag, T. E., Nicol, G. W. & Prosser, J. I. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ. Microbiol. 10, 1357–1364. https://doi.org/10.1111/j.1462-2920.2007.01563.x (2008).

    CAS  Article  PubMed  Google Scholar 

  • 13.

    Verhamme, D. T., Prosser, J. I. & Nicol, G. W. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J. 5, 1067–1071. https://doi.org/10.1038/ismej.2010.191 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 14.

    Wang, Y. F., Li, X. Y. & Gu, J. D. Differential responses of ammonia/ammonium-oxidizing microorganisms in mangrove sediment to amendment of acetate and leaf litter. Appl. Microbiol. Biotechnol. 98, 3165–3180. https://doi.org/10.1007/s00253-013-5318-7 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 15.

    Sahan, E. & Muyzer, G. Diversity and spatio-temporal distribution of ammonia-oxidizing Archaea and Bacteria in sediments of the Westerschelde estuary. FEMS Microbiol. Ecol. 64, 175–186. https://doi.org/10.1111/j.1574-6941.2008.00462.x (2008).

    CAS  Article  PubMed  Google Scholar 

  • 16.

    Saha, M., Sarkar, A. & Bandhophadhyay, B. Introduction to establish the comparative analysis of 16S rRNA gene sequences with amoA and nxrA for nitrifying bacteria isolated from East Kolkata wetland: An International Ramsar Site. J. Aquac. Res. Dev. https://doi.org/10.4172/2155-9546.1000270 (2014).

    Article  Google Scholar 

  • 17.

    Watson, S. W. Characteristics of a marine nitrifying bacterium, Nitrosocystis oceanus sp. n.. Limnol. Oceanogr. 10, 274–289 (1965).

    ADS  Article  Google Scholar 

  • 18.

    Campbell, M. A. et al. Nitrosococcus watsonii sp. nov., a new species of marine obligate ammonia-oxidizing bacteria that is not omnipresent in the world’s oceans: Calls to validate the names ‘Nitrosococcus halophilus’ and ‘Nitrosomonas mobilis’. FEMS Microbiol. Ecol. 76, 39–48. https://doi.org/10.1111/j.1574-6941.2010.01027.x (2011).

    CAS  Article  PubMed  Google Scholar 

  • 19.

    Hayatsu, M. et al. An acid-tolerant ammonia-oxidizing gamma-proteobacterium from soil. ISME J. 11, 1130–1141. https://doi.org/10.1038/ismej.2016.191 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 20.

    Koops, H.-P., Böttcher, B., Möller, U. C., Pommerening-Röser, A. & Stehr, G. Description of a new species of Nitrosococcus. Arch. Microbiol. 154, 244–248. https://doi.org/10.1007/bf00248962 (1990).

    CAS  Article  Google Scholar 

  • 21.

    Garrity, G. M., Bell, J. A., Lilburn, T. F. & I. , Nitrosomonadaceae fam nov. In Bergey’s Manual of Systematic Bacteriology, second edition, vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) (eds Brenner, D. J. et al.) 864 (Springer, New York, 2006).

    Google Scholar 

  • 22.

    Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996. https://doi.org/10.1038/nbt.4229 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 23.

    Schoer, J. H. Determination of the origin of suspended matter and sediments in the Elbe Estuary using natural tracers. Estuaries 13, 161–172. https://doi.org/10.2307/1351585 (1990).

    CAS  Article  Google Scholar 

  • 24.

    Groengroeft, A. et al. Distribution of metals in sediments of the Elbe estuary in 1994. Water Sci. Technol. 37, 109–116. https://doi.org/10.1016/S0273-1223(98)00189-9 (1998).

    CAS  Article  Google Scholar 

  • 25.

    Kleisinger, C., Haase, H., Hentschke, U. & Schubert, B. Contamination of sediments in the German North Sea Estuaries Elbe, Weser and Ems and its sensitivity to climate change. In (eds. Heiniger P. & Cullmann J.) 129–149 (Springer International Publishing, Geneva, 2015).

  • 26.

    Reese, A., Zimmermann, T., Profrock, D. & Irrgeher, J. Extreme spatial variation of Sr, Nd and Pb isotopic signatures and 48 element mass fractions in surface sediment of the Elbe River Estuary—Suitable tracers for processes in dynamic environments?. Sci. Total Environ. 668, 512–523. https://doi.org/10.1016/j.scitotenv.2019.02.401 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 27.

    Rotthauwe, J. H., Witzel, K. P. & Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63, 4704–4712 (1997).

    CAS  Article  Google Scholar 

  • 28.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17(3), 2011. https://doi.org/10.14806/ej.17.1.200 (2011).

    Article  Google Scholar 

  • 29.

    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584. https://doi.org/10.7717/peerj.2584 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 30.

    Šmilauer, P. & Lepš, J. Multivariate Analysis of Ecological Data using CANOCO 5 2nd edn. (Cambridge University Press, Cambridge, 2014).

    Google Scholar 

  • 31.

    Hammer, Ø, Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).

    Google Scholar 

  • 32.

    Holmes, A. J., Costello, A., Lidstrom, M. E. & Murrell, J. C. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol. Lett. 132, 203–208. https://doi.org/10.1016/0378-1097(95)00311-r (1995).

    CAS  Article  PubMed  Google Scholar 

  • 33.

    Okano, Y. et al. Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl. Environ. Microbiol. 70, 1008–1016. https://doi.org/10.1128/aem.70.2.1008-1016.2004 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Stehr, G., Böttcher, B., Dittberner, P., Rath, G. & Koops, H.-P. The ammonia-oxidizing nitrifying population of the River Elbe estuary. FEMS Microbiol. Ecol. 17, 177–186. https://doi.org/10.1016/0168-6496(95)00022-3 (1995).

    CAS  Article  Google Scholar 

  • 35.

    Koops, H. P., Böttcher, B., Möller, U. C., Pommerening-Röser, A. & Stehr, G. Classification of eight new species of ammonia-oxidizing bacteria: Nitrosomonas communis sp. nov., Nitrosomonas ureae sp. nov., Nitrosomonas aestuarii sp. nov., Nitrosomonas marina sp. nov., Nitrosomonas nitrosa sp. nov., Nitrosomonas eutropha sp. nov., Nitrosomonas oligotropha sp. nov. and Nitrosomonas halophila sp. nov.. Microbiology 137, 1689–1699. https://doi.org/10.1099/00221287-137-7-1689 (1991).

    CAS  Article  Google Scholar 

  • 36.

    Suwa, Y., Sumino, T. & Noto, K. Phylogenetic relationships of activated sludge isolates of ammonia oxidizers with different sensitivities to ammonium sulfate. J. Gen. Appl. Microbiol. 43, 373–379 (1997).

    CAS  Article  Google Scholar 

  • 37.

    Koops, H. P., Purkhold, U., Pommerening-Roser, A., Timmermann, G. & Wagner, M. The lithoautotrophic ammonia-oxidizing bacteria. In The Prokaryotes: An Evoluting Electronic Resource for the Microbiological Community (ed. Dworkin, M.) (Springer, New York, 2003).

    Google Scholar 

  • 38.

    Ballinger, S. J., Head, I. M., Curtis, T. P. & Godley, A. R. Molecular microbial ecology of nitrification in an activated sludge process treating refinery wastewater. Water Sci. Technol. 37, 105–108. https://doi.org/10.1016/S0273-1223(98)00091-2 (1998).

    CAS  Article  Google Scholar 

  • 39.

    Gieseke, A., Purkhold, U., Wagner, M., Amann, R. & Schramm, A. Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Appl. Environ. Microbiol. 67, 1351–1362. https://doi.org/10.1128/aem.67.3.1351-1362.2001 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 40.

    Dionisi, H. M. et al. Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrospira spp. from full-scale wastewater treatment plants by competitive PCR. Appl. Environ. Microbiol. 68, 245–253. https://doi.org/10.1128/AEM.68.1.245-253.2002 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 41.

    Harms, G. et al. Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ. Sci. Technol. 37, 343–351. https://doi.org/10.1021/es0257164 (2003).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 42.

    Qin, Y. Y., Li, D. T. & Yang, H. Investigation of total bacterial and ammonia-oxidizing bacterial community composition in a full-scale aerated submerged biofilm reactor for drinking water pretreatment in China. FEMS Microbiol. Lett. 268, 126–134. https://doi.org/10.1111/j.1574-6968.2006.00571.x (2007).

    CAS  Article  PubMed  Google Scholar 

  • 43.

    Regan, J. M., Harrington, G. W. & Noguera, D. R. Ammonia- and nitrite-oxidizing bacterial communities in a pilot-scale chloraminated drinking water distribution system. Appl. Environ. Microbiol. 68, 73–81 (2002).

    CAS  Article  Google Scholar 

  • 44.

    Stehr, G. et al. Exopolymers: An ecological characteristic of a floc-attached, ammonia-oxidizing bacterium. Microb. Ecol. 30, 115–126 (1995).

    CAS  Article  Google Scholar 

  • 45.

    Bollmann, A. & Laanbroek, H. J. Influence of oxygen partial pressure and salinity on the community composition of ammonia-oxidizing bacteria in the Schelde estuary. Aquat. Microb. Ecol. 28, 239–247 (2002).

    Article  Google Scholar 

  • 46.

    Cébron, A., Coci, M., Garnier, J. & Laanbroek, H. J. Denaturing gradient gel electrophoretic analysis of ammonia-oxidizing bacterial community structure in the lower Seine River: Impact of Paris wastewater effluents. Appl. Environ. Microbiol. 70, 6726–6737. https://doi.org/10.1128/aem.70.11.6726-6737.2004 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  • 47.

    Cao, H., Hong, Y., Li, M. & Gu, J. D. Community shift of ammonia-oxidizing bacteria along an anthropogenic pollution gradient from the Pearl River Delta to the South China Sea. Appl. Microbiol. Biotechnol. 94, 247–259. https://doi.org/10.1007/s00253-011-3636-1 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 48.

    Limpiyakorn, T., Shinohara, Y., Kurisu, F. & Yagi, O. Communities of ammonia-oxidizing bacteria in activated sludge of various sewage treatment plants in Tokyo. FEMS Microbiol. Ecol. 54, 205–217. https://doi.org/10.1016/j.femsec.2005.03.017 (2005).

    CAS  Article  PubMed  Google Scholar 

  • 49.

    Winogradsky, S. & Winogradsky, H. Etudes sur la microbiologie du sol. VII Nouvelles recherches sur les organismes de la nitrification. Ann. Inst Pasteur 50, 350–432 (1933).

    Google Scholar 

  • 50.

    Watson, S. W. Reisolation of Nitrosospira briensis S. Winogradsky and H. Winogradsky 1933. Archiv fur Mikrobiologie 75, 179–188. https://doi.org/10.1007/bf00408979 (1971).

    CAS  Article  PubMed  Google Scholar 

  • 51.

    Urakawa, H. et al. Nitrosospira lacus sp. nov., a psychrotolerant, ammonia-oxidizing bacterium from sandy lake sediment. Int. J. Syst. Evol. Microbiol. 65, 242–250. https://doi.org/10.1099/ijs.0.070789-0 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 52.

    Harms, H., Koops, H. P. & Wehrmann, H. An ammonia-oxidizing bacterium, Nitrosovibrio tenuis nov. gen. nov. sp. Arch. Microbiol. 108, 105–111. https://doi.org/10.1007/bf00425099 (1976).

    CAS  Article  PubMed  Google Scholar 

  • 53.

    Watson, S. W., Graham, L. B., Remsen, C. C. & Valois, F. W. A lobular, ammonia-oxidizing bacterium, Nitrosolobus multiformis nov. gen. nov. sp. Archiv fur Mikrobiologie 76, 183–203. https://doi.org/10.1007/bf00409115 (1971).

    CAS  Article  PubMed  Google Scholar 

  • 54.

    Hiorns, W. D. et al. Amplification of 16S ribosomal RNA genes of autotrophic ammonia-oxidizing bacteria demonstrates the ubiquity of nitrosospiras in the environment. Microbiology 141(Pt 11), 2793–2800. https://doi.org/10.1099/13500872-141-11-2793 (1995).

    Article  PubMed  Google Scholar 

  • 55.

    Hastings, R. C. et al. Direct molecular biological analysis of ammonia oxidising bacteria populations in cultivated soil plots treated with swine manure. FEMS Microbiol. Ecol. 23, 45–54. https://doi.org/10.1111/j.1574-6941.1997.tb00390.x (1997).

    CAS  Article  Google Scholar 

  • 56.

    Ceccherini, M. T. et al. Effects of swine manure on autotrophic ammonia-oxidizing bacteria in soil microcosms. Appl. Soil Ecol. 7, 149–157 (1998).

    Article  Google Scholar 

  • 57.

    Martikainen, P. J. & Nurmiaho-Lassila, E.-L. Nitrosospira, an important ammonium-oxidizing bacterium in fertilized coniferous forest soil. Can. J. Microbiol. 31, 190–197. https://doi.org/10.1139/m85-037 (1985).

    CAS  Article  Google Scholar 

  • 58.

    Kowalchuk, G. A., Stienstra, A. W., Heilig, G. H., Stephen, J. R. & Woldendorp, J. W. Changes in the community structure of ammonia-oxidizing bacteria during secondary succession of calcareous grasslands. Environ. Microbiol. 2, 99–110 (2000).

    CAS  Article  Google Scholar 

  • 59.

    Speksnijder, A. G., Kowalchuk, G. A., Roest, K. & Laanbroek, H. J. Recovery of a Nitrosomonas-like 16S rDNA sequence group from freshwater habitats. Syst. Appl. Microbiol. 21, 321–330. https://doi.org/10.1016/s0723-2020(98)80040-4 (1998).

    CAS  Article  PubMed  Google Scholar 

  • 60.

    Whitby, C. B., Saunders, J. R., Pickup, R. W. & McCarthy, A. J. A comparison of ammonia-oxidiser populations in eutrophic and oligotrophic basins of a large freshwater lake. Antonie Van Leeuwenhoek 79, 179–188. https://doi.org/10.1023/A:1010202211368 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 61.

    Burrell, P. C., Phalen, C. M. & Hovanec, T. A. Identification of Bacteria Responsible For Ammonia Oxidation In Freshwater Aquaria. Appl. Environ. Microbiol. 67, 5791–5800. https://doi.org/10.1128/aem.67.12.5791-5800.2001 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 62.

    Spieck, E., Meincke, M. & Bock, E. Taxonomic diversity of Nitrosovibrio strains isolated from building sandstones. FEMS Microbiol. Ecol. 11, 21–26. https://doi.org/10.1111/j.1574-6968.1992.tb05791.x (1992).

    Article  Google Scholar 

  • 63.

    Nugroho, R. A., Roling, W. F., Laverman, A. M., Zoomer, H. R. & Verhoef, H. A. Presence of Nitrosospira cluster 2 bacteria corresponds to N transformation rates in nine acid Scots pine forest soils. FEMS Microbiol. Ecol. 53, 473–481. https://doi.org/10.1016/j.femsec.2005.02.002 (2005).

    CAS  Article  PubMed  Google Scholar 

  • 64.

    Stephen, J. R., McCaig, A. E., Smith, Z., Prosser, J. I. & Embley, T. M. Molecular diversity of soil and marine 16S rRNA gene sequences related to beta-subgroup ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 62, 4147–4154 (1996).

    CAS  Article  Google Scholar 

  • 65.

    Phillips, C. J., Smith, Z., Embley, T. M. & Prosser, J. I. Phylogenetic differences between particle-associated and planktonic ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in the Northwestern Mediterranean Sea. Appl. Environ. Microbiol. 65, 779–786 (1999).

    CAS  Article  Google Scholar 

  • 66.

    Bano, N. & Hollibaugh, J. T. Diversity and distribution of DNA sequences with affinity to ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in the Arctic Ocean. Appl. Environ. Microbiol. 66, 1960–1969 (2000).

    CAS  Article  Google Scholar 

  • 67.

    McCaig, A. E., Embley, T. M. & Prosser, J. I. Molecular analysis of enrichment cultures of marine ammonia oxidisers. FEMS Microbiol. Lett. 120, 363–367 (1994).

    CAS  Article  Google Scholar 

  • 68.

    Nicolaisen, M. H. & Ramsing, N. B. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J. Microbiol. Methods 50, 189–203 (2002).

    CAS  Article  Google Scholar 

  • 69.

    Freitag, T. E., Chang, L. & Prosser, J. I. Changes in the community structure and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient. Environ. Microbiol. 8, 684–696. https://doi.org/10.1111/j.1462-2920.2005.00947.x (2006).

    CAS  Article  PubMed  Google Scholar 

  • 70.

    Wankel, S. D., Mosier, A. C., Hansel, C. M., Paytan, A. & Francis, C. A. Spatial variability in nitrification rates and ammonia-oxidizing microbial communities in the agriculturally impacted Elkhorn Slough estuary, California. Appl. Environ. Microbiol. 77, 269–280. https://doi.org/10.1128/aem.01318-10 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 71.

    Jacob, J., Sanders, T. & Dähnke, K. Nitrite consumption and associated isotope changes during a river flood event. Biogeosciences 13, 5649–5659. https://doi.org/10.5194/bg-13-5649-2016 (2016).

    ADS  CAS  Article  Google Scholar 

  • 72.

    Voynova, Y. G., Brix, H., Petersen, W., Weigelt-Krenz, S. & Scharfe, M. Extreme flood impact on estuarine and coastal biogeochemistry: The 2013 Elbe flood. Biogeosciences 14, 541–557. https://doi.org/10.5194/bg-14-541-2017 (2017).

    ADS  CAS  Article  Google Scholar 

  • 73.

    Pommerening-Röser, A., Rath, G. & Koops, H. P. Phylogenetic diversity within the genus Nitrosomonas. Syst. Appl. Microbiol. 19, 344–351. https://doi.org/10.1016/S0723-2020(96)80061-0 (1996).

    Article  Google Scholar 

  • 74.

    Nacke, H. et al. Links between seawater flooding, soil ammonia oxidiser communities and their response to changes in salinity. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fix144 (2017).

    Article  PubMed  Google Scholar 

  • 75.

    Laanbroek, H. J., Keijzer, R. M., Verhoeven, J. T. & Whigham, D. F. The distribution of ammonia-oxidizing betaproteobacteria in stands of black mangroves (Avicennia germinans). Front. Microbiol. 3, 153. https://doi.org/10.3389/fmicb.2012.00153 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 76.

    Juretschko, S. et al. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl. Environ. Microbiol. 64, 3042–3051 (1998).

    CAS  Article  Google Scholar 

  • 77.

    Daims, H. et al. Nitrification in sequencing biofilm batch reactors: Lessons from molecular approaches. Water Sci. Technol. 43, 9–18 (2001).

    ADS  CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Individual species provide multifaceted contributions to the stability of ecosystems

    Superconductor technology for smaller, sooner fusion