in

Determinants of vitamin D status in Kenyan calves

  • 1.

    Elder, C. J. & Bishop, N. J. Rickets. Lancet 383(9929), 1665–1676 (2014).

    PubMed  Article  Google Scholar 

  • 2.

    Dittmer, K. E. & Thompson, K. G. Vitamin D metabolism and rickets in domestic animals: A review. Vet. Pathol. 48(2), 389–407 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 3.

    Hymoller, L. & Jensen, S. K. Vitamin D(3) synthesis in the entire skin surface of dairy cows despite hair coverage. J. Dairy Sci. 93(5), 2025–2029 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 4.

    Mellanby E. Nutrition classics. Lancet 1, 407–12 (1919) (an experimental investigation of rickets. Edward Mellanby. Nutr. Rev. 34(11), 338–40, 1976).

  • 5.

    Provvedini, D. M., Tsoukas, C. D., Deftos, L. J. & Manolagas, S. C. 1,25-dihydroxyvitamin D3 receptors in human leukocytes. Science 221(4616), 1181–1183 (1983).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 6.

    Holick, M. F. Vitamin D deficiency. N. Engl. J. Med. 357(3), 266–281 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Baeke, F., Takiishi, T., Korf, H., Gysemans, C. & Mathieu, C. Vitamin D: Modulator of the immune system. Curr. Opin. Pharmacol. 10(4), 482–496 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 8.

    Besusso, D. et al. 1,25-Dihydroxyvitamin D-conditioned CD11c+ dendritic cells are effective initiators of CNS autoimmune disease. Front. Immunol. 6, 575 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 9.

    Saul, L. et al. 1,25-Dihydroxyvitamin D3 restrains CD4(+) T cell priming ability of CD11c(+) dendritic cells by upregulating expression of CD31. Front. Immunol. 10, 600 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Afzal, S., Brondum-Jacobsen, P., Bojesen, S. E. & Nordestgaard, B. G. Genetically low vitamin D concentrations and increased mortality: Mendelian randomisation analysis in three large cohorts. BMJ 349, g6330 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 11.

    Chowdhury, R. et al. Vitamin D and risk of cause specific death: Systematic review and meta-analysis of observational cohort and randomised intervention studies. BMJ 348, g1903 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Schottker, B. et al. Vitamin D and mortality: Meta-analysis of individual participant data from a large consortium of cohort studies from Europe and the United States. BMJ 348, g3656 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 13.

    Ganmaa, D., Munkhzul B, Fawzi W, Spiegelman D, Willett WC, Bayasgalan P, et al. High-dose vitamin D3 during tuberculosis treatment in Mongolia. A randomized controlled trial. Am. J. Respir. Crit. Care Med. 196(5), 628–637 (2017).

  • 14.

    Aibana, O. et al. Vitamin D status and risk of incident tuberculosis disease: A nested case-control study, systematic review, and individual-participant data meta-analysis. PLoS Med. 16(9), e1002907 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Wu, H. X. et al. Effects of vitamin D supplementation on the outcomes of patients with pulmonary tuberculosis: A systematic review and meta-analysis. BMC Pulm. Med. 18(1), 108 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 16.

    Jolliffe, D. A. et al. Vitamin D supplementation to prevent asthma exacerbations: A systematic review and meta-analysis of individual participant data. Lancet Respir. Med. 5(11), 881–890 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Munger, K. L., Levin, L. I., Hollis, B. W., Howard, N. S. & Ascherio, A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 296(23), 2832–2838 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Rhead, B. et al. Mendelian randomization shows a causal effect of low vitamin D on multiple sclerosis risk. Neurol. Genet. 2(5), e97 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 19.

    Manson, J. E. et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. N. Engl. J. Med. 380(1), 33–44 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 20.

    Pittas, A. G. et al. Vitamin D supplementation and prevention of type 2 diabetes. N. Engl. J. Med. 381(6), 520–530 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Titmarsh, H. et al. Vitamin D status predicts 30 day mortality in hospitalised cats. PLoS ONE 10(5), e0125997 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 22.

    Jaffey, J. A., Backus, R. C., McDaniel, K. M. & DeClue, A. E. Serum vitamin D concentrations in hospitalized critically ill dogs. PLoS ONE 13(3), e0194062 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 23.

    Titmarsh, H., Gow, A.G., Kilpatrick, S., Sinclair, J., Hill, T., Milne, E., et al. Association of vitamin D status and clinical outcome in dogs with a chronic enteropathy. J. Vet. Intern. Med. (2015).

  • 24.

    Allenspach, K., Rizzo, J., Jergens, A. E. & Chang, Y. M. Hypovitaminosis D is associated with negative outcome in dogs with protein losing enteropathy: A retrospective study of 43 cases. BMC Vet. Res. 13(1), 96 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Titmarsh, H. F. et al. Low vitamin D status is associated with systemic and gastrointestinal inflammation in dogs with a chronic enteropathy. PLoS ONE 10(9), e0137377 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 26.

    Titmarsh, H.F., Cartwright, J.A., Kilpatrick, S., Gaylor, D., Milne, E.M., Berry, J.L., et al. Relationship between vitamin D status and leukocytes in hospitalised cats. J. Feline Med. Surg. (2016).

  • 27.

    Handel, I. et al. Vitamin D status predicts reproductive fitness in a wild sheep population. Sci. Rep. 6, 18986 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Zhou, P. et al. Investigation of relationship between vitamin D status and reproductive fitness in Scottish hill sheep. Sci. Rep. 9(1), 1162 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 29.

    Corripio-Miyar, Y., Mellanby, R. J., Morrison, K. & McNeilly, T. N. 1,25-Dihydroxyvitamin D3 modulates the phenotype and function of Monocyte derived dendritic cells in cattle. BMC Vet. Res. 13(1), 390 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 30.

    Yue, Y., Hymoller, L., Jensen, S. K., Lauridsen, C. & Purup, S. Effects of vitamin D and its metabolites on cell viability and Staphylococcus aureus invasion into bovine mammary epithelial cells. Vet. Microbiol. 203, 245–251 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 31.

    Garcia-Barragan, A., Gutierrez-Pabello, J. A. & Alfonseca-Silva, E. Calcitriol increases nitric oxide production and modulates microbicidal capacity against Mycobacterium bovis in bovine macrophages. Comp. Immunol. Microbiol. Infect. Dis. 59, 17–23 (2018).

    PubMed  Article  Google Scholar 

  • 32.

    Waters, W. R. et al. Modulation of Mycobacterium bovis-specific responses of bovine peripheral blood mononuclear cells by 1,25-dihydroxyvitamin D(3). Clin. Diagn. Lab. Immunol. 8(6), 1204–1212 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Lippolis, J. D., Reinhardt, T. A., Sacco, R. A., Nonnecke, B. J. & Nelson, C. D. Treatment of an intramammary bacterial infection with 25-hydroxyvitamin D(3). PLoS ONE 6(10), e25479 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Merriman, K. E., Poindexter, M. B., Kweh, M. F., Santos, J. E. P. & Nelson, C. D. Intramammary 1,25-dihydroxyvitamin D3 treatment increases expression of host-defense genes in mammary immune cells of lactating dairy cattle. J. Steroid Biochem. Mol. Biol. 173, 33–41 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 35.

    Stabel, J. R., Reinhardt, T. A. & Hempel, R. J. Short communication: Vitamin D status and responses in dairy cows naturally infected with Mycobacterium avium ssp. paratuberculosis. J. Dairy Sci. 102(2), 1594–1600 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 36.

    de Clare Bronsvoort, B. M. et al. Design and descriptive epidemiology of the Infectious Diseases of East African Livestock (IDEAL) project, a longitudinal calf cohort study in western Kenya. BMC Vet. Res. 9, 171 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Hunt, S.E., McLaren, W., Gil, L., Thormann, A., Schuilenburg, H., Sheppard, D., et al. Ensembl variation resources. Database (2018).

  • 38.

    Jiang, X. et al. Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels. Nat. Commun. 9(1), 260 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 39.

    Manousaki, D., Mitchell, R., Dudding, T., Haworth, S., Harroud, A., Forgetta, V., et al. Genome-wide association study for vitamin D levels reveals 69 independent loci. Am. J. Hum. Genet. (2020).

  • 40.

    Titmarsh, H. et al. Association of vitamin D status and clinical outcome in dogs with a chronic enteropathy. J. Vet. Intern. Med. 29(6), 1473–1478 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Aspelund, T. et al. Effect of genetically low 25-hydroxyvitamin D on mortality risk: Mendelian randomization analysis in 3 large European cohorts. Nutrients. 11(1), 1 (2019).

    Article  CAS  Google Scholar 

  • 42.

    Huang, T. et al. Vitamin D and cause-specific vascular disease and mortality: a Mendelian randomisation study involving 99,012 Chinese and 106,911 European adults. BMC Med. 17(1), 160 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 43.

    Ong, J. S. et al. Association of vitamin D levels and risk of ovarian cancer: A Mendelian randomization study. Int. J. Epidemiol. 45(5), 1619–1630 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Reid, D. et al. The relation between acute changes in the systemic inflammatory response and plasma 25-hydroxyvitamin D concentrations after elective knee arthroplasty. Am. J. Clin. Nutr. 93(5), 1006–1011 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 45.

    Waldron, J. L. et al. Vitamin D: a negative acute phase reactant. J Clin Pathol. 66(7), 620–622 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 46.

    Nonnecke, B. J. et al. Acute phase response elicited by experimental bovine diarrhea virus (BVDV) infection is associated with decreased vitamin D and E status of vitamin-replete preruminant calves. J. Dairy Sci. 97(9), 5566–5579 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 47.

    Nelson, C. D. et al. Assessment of serum 25-hydroxyvitamin D concentrations of beef cows and calves across seasons and geographical locations. J. Anim. Sci. 94(9), 3958–3965 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 48.

    Saliba, W., Barnett, O., Stein, N., Kershenbaum, A. & Rennert, G. The longitudinal variability of serum 25(OH)D levels. Eur. J. Intern. Med. 23(4), e106–e111 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 49.

    Major, J. M. et al. Variability and reproducibility of circulating vitamin D in a nationwide U.S. population. J. Clin. Endocrinol. Metab. 98(1), 97–104 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 50.

    Jorde, R. et al. Tracking of serum 25-hydroxyvitamin D levels during 14 years in a population-based study and during 12 months in an intervention study. Am. J. Epidemiol. 171(8), 903–908 (2010).

    PubMed  Article  Google Scholar 

  • 51.

    McKibben, R. A. et al. Factors associated with change in 25-hydroxyvitamin D levels over longitudinal followup in the ARIC study. J. Clin. Endocrinol. Metab. 1, jc20151711 (2015).

    Google Scholar 

  • 52.

    van Schoor, N. M. et al. Longitudinal changes and seasonal variations in serum 25-hydroxyvitamin D levels in different age groups: Results of the Longitudinal Aging Study Amsterdam. Osteoporos. Int. 25(5), 1483–1491 (2014).

    PubMed  Google Scholar 

  • 53.

    Liu, X. et al. Longitudinal trajectory of vitamin D status from birth to early childhood in the development of food sensitization. Pediatr. Res. 74(3), 321–326 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Baiz, N. et al. Cord serum 25-hydroxyvitamin D and risk of early childhood transient wheezing and atopic dermatitis. J. Allergy Clin. Immunol. 133(1), 147–153 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 55.

    Lai, S. H. et al. Low cord-serum 25-hydroxyvitamin D levels are associated with poor lung function performance and increased respiratory infection in infancy. PLoS ONE 12(3), e0173268 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 56.

    Sauder, K. A. et al. Cord blood vitamin D levels and early childhood blood pressure: The healthy start study. J. Am. Heart Assoc. 8(9), e011485 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Cetinkaya, M. et al. Lower vitamin D levels are associated with increased risk of early-onset neonatal sepsis in term infants. J. Perinatol. 35(1), 39–45 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 58.

    Behera, C.K., Sahoo, J.P., Patra, S.D., Jena, P.K. Is lower vitamin D level associated with increased risk of neonatal sepsis? A prospective cohort study. Indian J. Pediatr. (2020).

  • 59.

    Sacco, R. E. et al. Differential expression of cytokines in response to respiratory syncytial virus infection of calves with high or low circulating 25-hydroxyvitamin D3. PLoS ONE 7(3), e33074 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 60.

    Yue, Y., Hymoller, L., Jensen, S. K. & Lauridsen, C. Effect of vitamin D treatments on plasma metabolism and immune parameters of healthy dairy cows. Arch. Anim. Nutr. 72(3), 205–220 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 61.

    Hidiroglou, M., Williams, C. J. & Proulx, J. G. Plasma vitamin D3 response in cattle and sheep exposed to ultraviolet radiation. Int. J. Vitam. Nutr. Res. 55(1), 41–46 (1985).

    CAS  PubMed  Google Scholar 

  • 62.

    Casas, E., Lippolis, J. D., Kuehn, L. A. & Reinhardt, T. A. Seasonal variation in vitamin D status of beef cattle reared in the central United States. Domest. Anim. Endocrinol. 52, 71–74 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 63.

    Hymoller, L., Jensen, S. K., Kaas, P. & Jakobsen, J. Physiological limit of the daily endogenous cholecalciferol synthesis from UV light in cattle. J. Anim. Physiol. Anim. Nutr. (Berl). 101(2), 215–221 (2017).

    CAS  Article  Google Scholar 

  • 64.

    Jolliffe, D. A. et al. Vitamin D to prevent exacerbations of COPD: Systematic review and meta-analysis of individual participant data from randomised controlled trials. Thorax 74(4), 337–345 (2019).

    PubMed  Article  Google Scholar 

  • 65.

    Martineau, A. R. et al. Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ 356, i6583 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 66.

    Nicholson, M., Butterworth, M.H. A guide to condition scoring of zebu cattle: ILRI (aka ILCA and ILRAD) (1986).

  • 67.

    Callaby, R., Pendarovski, C., Thumbi, S.M., Van Wyk, I., Mbole-Kariuki, M.N., Kiara, H., et al. The infectious diseases of East African livestock (IDEAL) project database. Nat. Sci. Data (submitted).

  • 68.

    Hurst, E.A., Homer, N.Z., Gow, A.G., Clements, D.N., Evans, H., Gaylor, D., et al. Vitamin D status is seasonally stable in northern European dogs. Vet. Clin. Pathol. (2020).

  • 69.

    Purcell, S., Chang, C. PLINK 2.0.

  • 70.

    Chang, C. C. et al. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience. 4(1), 1 (2015).

    Article  CAS  Google Scholar 

  • 71.

    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, 2019).

  • 72.

    Wickham H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2016).

  • 73.

    Fox, J. & Weisberg, S. An R companion to applied regression (Sage, Thousand Oaks, 2019).

    Google Scholar 

  • 74.

    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1(1), 3–14 (2010).

    Article  Google Scholar 

  • 75.

    Bartoń K. MuMIn: Multi-Model Inference. R package version 1.43.15 (2019).

  • 76.

    Gilmour, A., Gogel, B., Cullis, B., Thompson, R., Butler, D., Cherry, M., et al. ASReml user guide release 3.0. (VSN Int Ltd, 2008).

  • 77.

    Zheng, X. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28(24), 3326–3328 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 78.

    Hill, W. G. & Mackay, T. F. DS Falconer and introduction to quantitative genetics. Genetics 167(4), 1529–1536 (2004).

    PubMed  PubMed Central  Google Scholar 

  • 79.

    Chen H. GMMAT: Generalized linear Mixed Model Association Tests Version 1.1. 2. (2019).

  • 80.

    Turner S. qqman: Q-Q and Manhattan Plots for GWAS Data. (2017).


  • Source: Ecology - nature.com

    An antidote to “fast fashion”

    A holistic approach in herbicide resistance research and management: from resistance detection to sustainable weed control