in

Determination of the most effective design for the measurement of photosynthetic light-response curves for planted Larix olgensis trees

  • 1.

    Henley, W. J. Measurement and interpretation of photosynthetic light response curves in algae in the context of photoinhibition and diel changes. J. Phycol. 29, 729–739 (1993).

    Article  Google Scholar 

  • 2.

    Kosugi, Y., Shibata, S. & Kobashi, S. Parameterization of the CO2 and H2O gas exchange of several temperate deciduous broad-leaved trees at the leaf scale considering seasonal changes. Plant Cell Environ. 26, 285–301 (2003).

    Article  Google Scholar 

  • 3.

    Mission, L., Tu, K. P., Boniello, R. A. & Goldstein, A. H. Seasonality of photosynthetic parameters in a multi-specific and vertically complex forest ecosystem in the Sierra Nevada of California. Tree Physiol. 26, 729–741 (2006).

    Article  Google Scholar 

  • 4.

    Coble, A. P., Vanderwall, B., Mau, A. & Cavaleri, M. How vertical patterns in leaf traits shift seasonally and the implications for modeling canopy photosynthesis in a temperate deciduous forest. Tree Physiol. 36, 1077–1091 (2016).

    CAS  Article  Google Scholar 

  • 5.

    Wilson, K. B., Baldocchi, D. D. & Hanson, P. J. Leaf age affects the seasonal pattern of photosynthetic capacity and net ecosystem exchange of carbon in a deciduous forest. Plant Cell Environ. 24, 571–583 (2011).

    Article  Google Scholar 

  • 6.

    Jin, S., Zhou, X. & Fan, J. Modeling daily photosynthesis of nine major tree species in northeast China. Forest Ecol. Manag. 184, 125–140 (2003).

    Article  Google Scholar 

  • 7.

    Zhang, X. Q. & Xu, D. Y. Eco-physiological modelling of canopy photosynthesis and growth of a Chinese fir plantation. Forest Ecol. Manag. 173, 201–211 (2003).

    Article  Google Scholar 

  • 8.

    Marino, G., Aqil, M. & Shipley, B. The leaf economics spectrum and the prediction of photosynthetic light-response curves. Funct. Ecol. 24, 263–272 (2010).

    Article  Google Scholar 

  • 9.

    Lachapelle, P. P. & Shipley, B. Interspecific prediction of photosynthetic light response curves using specific leaf mass and leaf nitrogen content: Effects of differences in soil fertility and growth irradiance. Ann. Bot. 109, 1149–1157 (2012).

    CAS  Article  Google Scholar 

  • 10.

    Xu, J. Z., Yu, Y. M., Peng, S. Z., Yang, S. H. & Liao, L. X. A modified nonrectangular hyperbola equation for photosynthetic light-response curves of leaves with different nitrogen status. Photosynthetica 52, 117–123 (2014).

    CAS  Article  Google Scholar 

  • 11.

    Calama, R., Puértolas, J., Madrigal, G. & Pardos, M. Modeling the environmental response of leaf net photosynthesis in Pinus pinea L. natural regeneration. Ecol. Model. 251, 9–21 (2013).

    Article  Google Scholar 

  • 12.

    Mayoral, C., Calama, R., Sánchez-González, M. & Pardos, M. Modelling the influence of light, water and temperature on photosynthesis in young trees of mixed Mediterranean forests. New For. 46, 485–506 (2015).

    Article  Google Scholar 

  • 13.

    Liu, Q., Dong, L. H. & Li, F. R. Modeling net CO2, assimilation (AN) within the crown of young planted Larix olgensis trees. Can. J. For. Res. 48, 1085–1098 (2018).

    CAS  Article  Google Scholar 

  • 14.

    Cavaleri, M. A., Oberbauer, S. F., Clark, D. B., Clark, D. A. & Ryan, M. G. Height is more important than light in determining leaf morphology in a tropical forest. Ecology 91, 1730–1739 (2010).

    Article  Google Scholar 

  • 15.

    Han, Q. Height-related decreases in mesophyll conductance, leaf photosynthesis and compensating adjustments associated with leaf nitrogen concentrations in Pinus densiflora. Tree Physiol. 31, 976–984 (2011).

    CAS  Article  Google Scholar 

  • 16.

    Kosugi, Y., Takanashi, S., Yokoyama, N. & Kamakura, M. Vertical variation in leaf gas exchange parameters for a Southeast Asian tropical rainforest in Peninsular Malaysia. J. Plant Res. 125, 735–748 (2012).

    Article  Google Scholar 

  • 17.

    Liu, Q., Dong, L. H., Li, F. R. & Xie, L. F. Spatial heterogeneity of canopy photosynthesis for Larix olgensis. Chin. J. Appl. Ecol. 27, 2789–2796 (2016) (in Chinese).

    Google Scholar 

  • 18.

    Liu, Q. & Li, F. R. Spatial and seasonal variations of standardized photosynthetic parameters under different environmental conditions for young planted Larix olgensis Henry Trees. Forests 9, 522 (2018).

    Article  Google Scholar 

  • 19.

    Ye, Z. P. A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. Photosynthetica 45, 637–640 (2007).

    CAS  Article  Google Scholar 

  • 20.

    Mengistu, T., Sterck, F. J., Fetene, M., Tadesse, W. & Bongers, F. Leaf gas exchange in the frankincense tree (Boswellia papyrifera) of African dry woodlands. Tree Physiol. 31, 740–750 (2011).

    Article  Google Scholar 

  • 21.

    Chen, Z. Y., Peng, Z. S., Yang, J., Chen, W. Y. & Ou-Yang, Z. M. A mathematical model for describing light-response curves in Nicotiana tabacum L. Photosynthetica 49, 467–471 (2011).

    Google Scholar 

  • 22.

    Benomar, L., Desrochers, A. & Larocque, G. R. Changes in specific leaf area and photosynthetic nitrogen-use efficiency associated with physiological acclimation of two hybrid poplar clones to intraclonal competition. Can. J. For. Res. 41, 1465–1476 (2011).

    CAS  Article  Google Scholar 

  • 23.

    Ye, Z. P., Suggett, D. J., Robakowski, P. & Kang, H. J. A mechanistic model for the photosynthesis–light response based on the photosynthetic electron transport of photosystem II in C3 and C4 species. New Phytol. 199, 110–120 (2013).

    CAS  Article  Google Scholar 

  • 24.

    Xu, C. L., Sun, X. M., Zhang, S. G. & Dong, J. Maternal and paternal effects on photosynthetic characteristics of several Larix kaempferi × L. olgensis Hybrids . For. Res. 24, 8–12 (2011) (in Chinese).

    Google Scholar 

  • 25.

    Casella, E. & Ceulemans, R. Spatial distribution of leaf morphological and physiological characteristics in relation to local radiation regime within the canopies of 3-year-old Populus clones in coppice culture. Tree Physiol. 22, 1277–1288 (2002).

    CAS  Article  Google Scholar 

  • 26.

    Wieser, G., Oberhuber, W., Walder, L., Spieler, D. & Gruber, A. Photosynthetic temperature adaptation of Pinus cembra within the timberline ecotone of the Central Austrian Alps. Ann. For. Sci. 67, 201 (2010).

    Article  Google Scholar 

  • 27.

    Wang, Z., Kang, S., Jensen, C. R. & Liu, F. L. Alternate partial root-zone irrigation reduces bundle-sheath cell leakage to CO2 and enhances photosynthetic capacity in maize leaves. J. Exp. Bot. 63, 1145–1153 (2012).

    CAS  Article  Google Scholar 

  • 28.

    Quan, X. K. & Wang, C. K. Responses and influencing factors of foliar photosynthetic characteristics of Larix gmelinii to changing environments. Chin. Sci. Bull. 61, 2273–2286 (2016) (in Chinese).

    Article  Google Scholar 

  • 29.

    Posada, J. M., Lechowicz, M. J. & Kitajima, K. Optimal photosynthetic use of light by tropical tree crowns achieved by adjustment of individual leaf angles and nitrogen content. Ann. Bot. 103, 795–805 (2009).

    CAS  Article  Google Scholar 

  • 30.

    Rosati, A., Metcalf, S. G. & Lampinen, B. D. A simple method to estimate photosynthetic radiation use efficiency of canopies. Ann. Bot. 93, 567–574 (2004).

    CAS  Article  Google Scholar 

  • 31.

    Kern, S. O., Hovenden, M. J. & Jordan, G. J. The impacts of leaf shape and arrangement on light interception and potential photosynthesis in southern beech (Nothofagus cunninghamii). Funct. Plant Bio. 31, 471–480 (2004).

    Article  Google Scholar 

  • 32.

    Montalbán, I. A., De-Diego, N. & Moncaleán, P. Testing novel cytokinins for improved in vitro adventitious shoots formation and subsequent ex vitro performance in Pinus radiata. Forestry 84, 363–373 (2011).

    Article  Google Scholar 

  • 33.

    Lewis, J. D., Mckane, R. B., Tingey, D. T. & Beedlow, P. Vertical gradients in photosynthetic light response within an old-growth Douglas-fir and western hemlock canopy. Tree Physiol. 20, 447–456 (2000).

    Article  Google Scholar 

  • 34.

    Calder, W. J., Horn, K. J. & Clair, S. B. S. Conifer expansion reduces the competitive ability and herbivore defense of aspen by modifying light environment and soil chemistry. Tree Physiol. 31, 582–591 (2011).

    CAS  Article  Google Scholar 

  • 35.

    Joesting, H. M., Mccarthy, B. C. & Brown, K. J. The photosynthetic response of American chestnut seedlings to differing light conditions. Can. J. For. Res. 37, 1714–1722 (2007).

    CAS  Article  Google Scholar 

  • 36.

    Xu, L. & Baldocchi, D. D. Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiol. 23, 865–877 (2003).

    Article  Google Scholar 

  • 37.

    Wang, Q., Iio, A., Tenhunen, J. & Kakubari, Y. Annual and seasonal variations in photosynthetic capacity of Fagus crenata along an elevation gradient in the Naeba Mountains, Japan. Tree Physiol. 28, 277–285 (2008).

    Article  Google Scholar 

  • 38.

    Luo, Y. et al. Canopy quantum yield in a mesocosm study. Agric. For. Meteorol. 100, 35–48 (2000).

    ADS  Article  Google Scholar 

  • 39.

    Gardiner, E. S. & Krauss, K. W. Photosynthetic light response of flooded cherrybark oak (Quercus pagoda) seedlings grown in two light regimes. Tree Physiol. 21, 1103–1111 (2001).

    CAS  Article  Google Scholar 

  • 40.

    Wickham, H., Francois, R., Henry, L., Müller, K. RStudio. dplyr: A grammar of data manipulation. R Package Version 0.8.3. (2019).


  • Source: Ecology - nature.com

    Public health is moot without water security

    Decarbonize and diversify