in

Diet and life history reduce interspecific and intraspecific competition among three sympatric Arctic cephalopods

  • 1.

    Gause, G. F. The Struggle for Existence (Williams & Wilkins, Baltimore, 1934).

    Google Scholar 

  • 2.

    Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).

    Article  Google Scholar 

  • 3.

    Volterra, V. Variations and fluctuations of the number of individuals in marine intertidal species living together. J. Conseil. 3, 3–51 (1928).

    Article  Google Scholar 

  • 4.

    Darwin, C. On the Origin of Species by Natural Selection, or the Preservation of Favoured Races in the Struggle for Life (John Murray, London, 1859).

    Google Scholar 

  • 5.

    Hardin, G. The competitive exclusion principle. Science 131, 1292–1297 (1960).

    ADS  CAS  Article  Google Scholar 

  • 6.

    Alley, T. R. Competition theory, evolution, and the concept of an ecological niche. Acta Biotheor. 31, 165–179 (1982).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Chase, J. M. & Leibold, M. A. Ecological Niches: Linking Classical and Contemporary Approaches (University of Chicago Press, Chicago, 2003).

    Google Scholar 

  • 8.

    Pianka, E. R. Competition and niche theory. In Theoretical Ecology: Principles and Applications (ed. May, R. M.) 114–141 (W.B. Saunders, Philadelphia, 1976).

    Google Scholar 

  • 9.

    Gerking, S. D. The Feeding Ecology of Fish (Academic, San Diego, 1994).

    Google Scholar 

  • 10.

    Ross, S. T. Resource partitioning in fish assemblages: a review of field studies. Copeia 2, 352–388 (1986).

    Article  Google Scholar 

  • 11.

    Persson, L. Asymmetrical competition: are larger animals competitively superior?. Am. Nat. 126, 261–266 (1985).

    Article  Google Scholar 

  • 12.

    Boecklen, W. J., Yarnes, C. T., Cook, B. A. & James, A. C. On the use of stable isotopes in trophic ecology. Annu. Rev. Ecol. Evol. Syst. 42, 411–440 (2011).

    Article  Google Scholar 

  • 13.

    Layman, C. A. et al. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol. Rev. Camb. Philos. 87, 545–562 (2012).

    Article  Google Scholar 

  • 14.

    Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A. & MacLeod, H. Determining trophic niche width: a novel approach using stable isotope analysis. J. Anim. Ecol. 73, 1007–1012 (2004).

    Article  Google Scholar 

  • 15.

    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER-stable isotope Bayesian ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).

    PubMed  Article  Google Scholar 

  • 16.

    Layman, C. A., Arrington, D. A., Montaña, C. G. & Post, D. M. Can stable isotope ratios provide for community-wide measures of trophic structure?. Ecology 88, 42–48 (2007).

    PubMed  Article  Google Scholar 

  • 17.

    Newsome, S. D., del Rio, C. M., Bearhop, S. & Phillips, D. L. A niche for isotopic ecology. Front. Ecol. Environ. 5, 429–436 (2007).

    Article  Google Scholar 

  • 18.

    Hette-Tronquart, N. Isotopic niche is not equal to trophic niche. Ecol. Lett. 22, 1987–1989 (2019).

    PubMed  Article  Google Scholar 

  • 19.

    Parnell, C. A. et al. Bayesian stable isotope mixing models. Environmetrics 24, 387–399 (2013).

    MathSciNet  Google Scholar 

  • 20.

    Phillips, D. L. et al. Best practices for use of stable isotope mixing models in food-web studies. Can. J. Zool. 92, 823–835 (2014).

    Article  Google Scholar 

  • 21.

    Knickle, D. C. & Rose, G. A. Dietary niche partitioning in sympatric gadid species in coastal Newfoundland: evidence from stomachs and C-N isotopes. Environ. Biol. Fish. 97, 343–355 (2014).

    Article  Google Scholar 

  • 22.

    Simpson, S. J., Sims, D. W. & Trueman, C. M. Ontogenetic trends in resource partitioning and trophic geography of sympatric skates (Rajidae) inferred from stable isotope composition across eye lenses. Mar. Ecol. Prog. Ser. 624, 103–116 (2019).

    ADS  CAS  Article  Google Scholar 

  • 23.

    Bearhop, S. et al. Stable isotopes indicate sex-specific and long-term individual foraging specialisation in diving seabirds. Mar. Ecol. Prog. Ser. 311, 157–164 (2006).

    ADS  Article  Google Scholar 

  • 24.

    Young, H. S., McCauley, D. J., Dirzo, R., Dunbar, R. B. & Shaffer, S. A. Niche partitioning among and within sympatric tropical seabirds revealed by stable isotope analysis. Mar. Ecol. Prog. Ser. 416, 285–294 (2010).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Botta, S. et al. Isotopic niche overlap and partition among three Antarctic seals from the Western Antarctic Peninsula. Deep-Sea Res. II(149), 240–249 (2018).

    Google Scholar 

  • 26.

    Kiszka, J. et al. Ecological niche segregation within a community of sympatric dolphins around a tropical island. Mar. Ecol. Prog. Ser. 433, 273–288 (2011).

    ADS  Article  Google Scholar 

  • 27.

    Ogloff, W. R., Yurkowski, D. J., Davoren, G. K. & Ferguson, S. H. Diet and isotopic niche overlap elucidate competition potential between seasonally sympatric phocids in the Canadian Arctic. Mar. Biol. 166, 103 (2019).

    Article  CAS  Google Scholar 

  • 28.

    Dubois, S., Orvain, F., Marin-Léal, J. C., Ropert, M. & Lefebvre, S. Small-scale spatial variability of food partitioning between cultivated oysters and associated suspension feeding species, as revealed by stable isotopes. Mar. Ecol. Prog. Ser. 336, 151–160 (2007).

    ADS  CAS  Article  Google Scholar 

  • 29.

    Karlson, A. M. L., Gorokhova, E. & Elmgren, R. Do deposit-feeders compete? Isotopic niche analysis of an invasion in a species-poor system. Sci. Rep. 5, 9715 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Taupp, T., Hellmann, C., Gergs, R., Winkelmann, C. & Wetzel, M. A. Life under exceptional conditions—isotopic niches of benthic invertebrates in the estuarine maximum turbidity zone. Estuar. Coast. 40, 502–512 (2017).

    CAS  Article  Google Scholar 

  • 31.

    Bennice, C. O., Rayburn, A. R., Brooks, W. R. & Hanlon, R. T. Fine-scale habitat partitioning facilitates sympatry between two octopus species in a shallow Florida lagoon. Mar. Ecol. Prog. Ser. 609, 151–161 (2019).

    Article  Google Scholar 

  • 32.

    Matias, R. S. et al. Show your beaks and we tell you what you eat: different ecology in sympatric Antarctic benthic octopods under a climate change context. Mar. Environ. Res. 150, 104757 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 33.

    Rosas-Luis, R., Navarro, J., Sánchez, P. & del Río, J. L. Assessing the trophic ecology of three sympatric squid in the marine ecosystem off the Patagonian Shelf by combining stomach content and stable isotopic analyses. Mar. Biol. Res. 12, 402–411 (2016).

    Article  Google Scholar 

  • 34.

    Boyle, P. R. & Rodhouse, P. G. Cephalopods: Ecology and Fisheries (Wiley-Blackwell, Oxford, 2005).

    Google Scholar 

  • 35.

    Rodhouse, P. G. & Nigmatullin, Ch. M. Role as consumers. Philos. Trans. R. Soc. B 351, 1003–1022 (1996).

    ADS  Article  Google Scholar 

  • 36.

    Jereb, P. & Roper, C.F.E. Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Volume 1. Chambered nautiluses and sepioids (Nautilidae, Sepiidae, Sepiolidae, Sepiadariidae, Idiosepiidae and Spirulidae). FAO Species Catalogue for Fishery Purposes, No. 4. Rome: FAO (2005).

  • 37.

    Golikov, A. V., Sabirov, R. M., Lubin, P. A. & Jørgensen, L. L. Changes in distribution and range structure of Arctic cephalopods due to climatic changes of the last decades. Biodiversity 14, 28–35 (2013).

    Article  Google Scholar 

  • 38.

    Nesis, K. N. Cephalopod mollusks of the Arctic Ocean and its seas. In Fauna and Distribution of Molluscs: North Pacific and Arctic Basin (ed. Kafanov, A. I.) 115–136 (USSR Academy of Sciences, Vladivostok, 1987) (in Russian).

    Google Scholar 

  • 39.

    Xavier, J. C. et al. A review on the biodiversity, distribution and trophic role of cephalopods in the Arctic and Antarctic marine ecosystems under a changing ocean. Mar. Biol. 165, 93 (2018).

    Article  Google Scholar 

  • 40.

    Golikov, A. V. et al. Reproductive biology and ecology of the boreoatlantic armhook squid Gonatus fabricii (Cephalopoda: Gonatidae). J. Mollus. Stud. 85, 287–299 (2019).

    Article  Google Scholar 

  • 41.

    Golikov, A. V. et al. Food spectrum and trophic position of an Arctic cephalopod, Rossia palpebrosa (Sepiolida), inferred by stomach contents and stable isotope (δ13C and δ15N) analyses. Mar. Ecol. Prog. Ser. 632, 131–144 (2019).

    ADS  Article  Google Scholar 

  • 42.

    Golikov, A. V. et al. Ontogenetic changes in stable isotope (δ13C and δ15N) values in squid Gonatus fabricii (Cephalopoda) reveal its important ecological role in the Arctic. Mar. Ecol. Prog. Ser. 606, 65–78 (2018).

    ADS  CAS  Article  Google Scholar 

  • 43.

    Golikov, A. V., Sabirov, R. M. & Lubin, P. A. First assessment of biomass and abundance of cephalopods Rossia palpebrosa and Gonatus fabricii in the Barents Sea. J. Mar. Biol. Assoc. UK 97, 1605–1616 (2017).

    Article  Google Scholar 

  • 44.

    Nesis, K. N. Oceanic Cephalopods: Distribution, Life Forms, Evolution (Nauka, Moscow, 1985) (in Russian).

    Google Scholar 

  • 45.

    Overland, J. E., Wang, M., Walsh, J. E. & Stroeve, J. C. Future Arctic climate changes: adaptation and mitigation time scales. Earth’s Future 2, 68–74 (2014).

    ADS  Article  Google Scholar 

  • 46.

    Dalpadado, P. et al. Climate effects on temporal and spatial dynamics of phytoplankton and zooplankton in the Barents Sea. Prog. Oceanogr. 185, 102320 (2020).

    Article  Google Scholar 

  • 47.

    Laidre, K. L. et al. Arctic marine mammal population status, sea ice habitat loss, and conservation recommendations for the 21st century. Conserv. Biol. 29, 724–737 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Mercer, M.C. Systematics of the Sepiolid Squid Rossia Owen 1835 in Canadian Waters with a Preliminary Review of the Genus and Notes on Biology (MSc thesis). St. Johns: Memorial University of Newfoundland (1968).

  • 49.

    Golikov, A.V. Distribution and reproductive biology of ten-armed cephalopods (Sepiolida, Teuthida) in the Barents Sea and adjacent areas (PhD thesis). Moscow: Moscow State University (2015) (in Russian).

  • 50.

    Golikov, A.V., Sabirov, R.M., Gudmundsson, G. Cephalopoda (Smokkdýr), Rossia megaptera Verrill, 1881. (2018). http://www.ni.is/biota/animalia/mollusca/cephalopoda/rossia-megaptera. Accessed 04 June 2020.

  • 51.

    Golikov, A. V., Morov, A. R., Sabirov, R. M., Lubin, P. A. & Jørgensen, L. L. Functional morphology of reproductive system of Rossia palpebrosa (Cephalopoda, Sepiolida) in Barents Sea. Proc. Kazan Univ. Nat. Sci. Ser. 155, 116–129 (2013) (in Russian with English abstract).

    Google Scholar 

  • 52.

    Cherel, Y., Ducatez, S., Fontaine, C., Richard, P. & Guinet, C. Stable isotopes reveal the trophic position and mesopelagic fish diet of female southern elephant seals breeding on the Kerguelen Islands. Mar. Ecol. Prog. Ser. 370, 239–247 (2008).

    ADS  Article  Google Scholar 

  • 53.

    Cherel, Y. & Hobson, K. A. Stable isotopes, beaks and predators: a new tool to study the trophic ecology of cephalopods, including giant and colossal squids. Proc. R. Soc. B. 272, 1601–1607 (2005).

    PubMed  Article  Google Scholar 

  • 54.

    Golikov, A. V. et al. The first global deep-sea stable isotope assessment reveals the unique trophic ecology of Vampire Squid Vampyroteuthis infernalis (Cephalopoda). Sci. Rep. 9, 19099 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Cherel, Y., Fontaine, C., Jackson, G. D., Jackson, C. H. & Richard, P. Tissue, ontogenic and sex-related differences in δ13C and δ15N values of the oceanic squid Todarodes filippovae (Cephalopoda: Ommastrephidae). Mar. Biol. 156, 699–708 (2009).

    Article  Google Scholar 

  • 56.

    Zar, J. H. Biostatistical Analysis 5th edn. (Prentice Hall, Upper Saddle River, 2010).

    Google Scholar 

  • 57.

    Ruiz-Cooley, R. I., Garcia, K. Y. & Hetherington, E. D. Effects of lipid removal and preservatives on carbon and nitrogen stable isotope ratios of squid tissues: implications for ecological studies. J. Exp. Mar. Biol. Ecol. 407, 101–107 (2011).

    CAS  Article  Google Scholar 

  • 58.

    Hobson, K. A. & Cherel, Y. Isotopic reconstruction of marine food webs using cephalopod beaks: new insight from captively raised Sepia officinalis. Can. J. Zool. 84, 766–770 (2006).

    Article  Google Scholar 

  • 59.

    Post, D. M. Using stable isotopes to estimate trophic position: models, methods and assumptions. Ecology 83, 703–718 (2002).

    Article  Google Scholar 

  • 60.

    Hobson, K. A. et al. A stable isotope (δ13C, δ15N) model for the North Water food web: implications for evaluating trophodynamics and the flow of energy and contaminants. Deep-Sea Res. II 49, 5131–5150 (2002).

    ADS  CAS  Article  Google Scholar 

  • 61.

    Van der Zanden, M. J., Cabana, G. & Rasmussen, J. B. Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature dietary data. Can. J. Fish. Aquat. Sci. 54, 1142–1158 (1997).

    Article  Google Scholar 

  • 62.

    Hussey, N. E. et al. Rescaling the trophic structure of marine food webs. Ecol. Lett. 17, 239–250 (2014).

    PubMed  Article  Google Scholar 

  • 63.

    Hussey, N. E. et al. Corrigendum to Hussey et al. (2014). Ecol. Lett. 17, 768 (2014).

    PubMed Central  Article  PubMed  Google Scholar 

  • 64.

    Linnebjerg, J. F. et al. Deciphering the structure of the West Greenland marine food web using stable isotopes (δ13C, δ15N). Mar. Biol. 163, 230 (2016).

    Article  Google Scholar 

  • 65.

    Søreide, J. E. et al. Sympagic-pelagic-benthic coupling in Arctic and Atlantic waters around Svalbard revealed by stable isotopic and fatty acid tracers. Mar. Biol. Res. 9, 831–850 (2013).

    Article  Google Scholar 

  • 66.

    Sokolowski, A. et al. Trophic structure of the macrobenthic community of Hornsund, Spitsbergen, based on the determination of stable carbon and nitrogen isotopic signatures. Polar Biol. 37, 1247–1260 (2014).

    Article  Google Scholar 

  • 67.

    Tamelander, T. et al. Trophic relationships and pelagic-benthic coupling during summer in the Barents Sea marginal ice zone, revealed by stable carbon and nitrogen isotope measurements. Mar. Ecol. Prog. Ser. 310, 33–46 (2006).

    ADS  CAS  Article  Google Scholar 

  • 68.

    R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. (2019). http://www.r-project.org/. Accessed 04 June 2020.

  • 69.

    Syväranta, J., Lensu, A., Marjomaki, T. J., Oksanen, S. & Jones, R. I. An empirical evaluation of the utility of convex hull and standard ellipse areas for assessing population niche widths from stable isotope data. PLoS ONE 8, e56094 (2013).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 70.

    Langton, R. W. Diet overlap between Atlantic cod, Gadus morphua, silver hake, Merluccius bilinearis, and fifteen other northwest Atlantic finfish. Fish. B NOAA 80, 745–759 (1982).

    Google Scholar 

  • 71.

    Parnell, C.A. simmr: A Stable Isotope Mixing Model. Version 0.4.1. (2019). https://cran.r-project.org/web/packages/simmr/. Accessed 04 June 2020.

  • 72.

    Smith, J. A., Mazumder, D., Suthers, I. M. & Taylor, M. D. To fit or not to fit: evaluating stable isotope mixing models using simulated mixing polygons. Methods Ecol. Evol. 4, 612–618 (2013).

    Article  Google Scholar 

  • 73.

    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).

    Google Scholar 

  • 74.

    Gruber, N. et al. Spatiotemporal patterns of carbon-13 in the global surface oceans and the oceanic Suess effect. Glob. Biogeochem. Cycl. 13, 307–335 (1999).

    ADS  CAS  Article  Google Scholar 

  • 75.

    Yurkowski, D. J., Hussey, N. E., Ferguson, S. H. & Fisk, A. T. A temporal shift in trophic diversity among a predator assemblage in a warming Arctic. R. Soc. Open. Sci. 5, 180259 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 76.

    Guerra, A. et al. Life-history traits of the giant squid Architeuthis dux revealed from stable isotope signatures recorded in beaks. ICES J. Mar. Sci. 67, 1425–1431 (2010).

    Article  Google Scholar 

  • 77.

    Queirós, J. P. et al. Ontogenic changes in habitat and trophic ecology in the Antarctic squid Kondakovia longimana derived from isotopic analysis on beaks. Polar Biol. 41, 2409–2421 (2018).

    Article  Google Scholar 

  • 78.

    Queirós, J. P. et al. Ontogenetic changes in habitat and trophic ecology of the giant Antarctic octopus Megaleledone setebos inferred from stable isotope analyses in beaks. Mar. Biol. 167, 56 (2020).

    Article  CAS  Google Scholar 

  • 79.

    Hansen, H. J., Hedeholm, R. B., Sünksen, K., Christensen, J. T. & Grønkjær, P. Spatial variability of carbon (δ13C) and nitrogen (δ15N) stable isotope ratios in an Arctic marine food web. Mar. Ecol. Prog. Ser. 467, 47–59 (2012).

    ADS  CAS  Article  Google Scholar 

  • 80.

    Cherel, Y., Ridoux, V., Spitz, J. & Richard, P. Stable isotopes document the trophic structure of a deep-sea cephalopod assemblage including giant octopod and giant squid. Biol. Lett. 5, 364–367 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 81.

    Chouvelon, T. et al. Revisiting the use of δ15N in meso-scale studies of marine food webs by considering spatio-temporal variations in stable isotopic signatures—the case of an open ecosystem: the Bay of Biscay (North-East Atlantic). Prog. Oceanogr. 101, 92–105 (2012).

    ADS  Article  Google Scholar 

  • 82.

    Das, K., Lepoint, G., Leroy, Y. & Bouquegneau, J. M. Marine mammals from the southern North Sea: feeding ecology data from δ13C and δ15N measurements. Mar. Ecol. Prog. Ser. 263, 287–298 (2003).

    ADS  Article  Google Scholar 

  • 83.

    Gong, Y., Ruiz-Cooley, R. I., Hunsicker, M. E., Li, Y. & Chen, X. Sexual dimorphism in feeding apparatus and niche partitioning in juvenile jumbo squid Dosidicus gigas. Mar. Ecol. Prog. Ser. 607, 99–112 (2018).

    ADS  CAS  Article  Google Scholar 

  • 84.

    Trasviña-Carrillo, L. D. et al. Spatial and trophic preferences of jumbo squid Dosidicus gigas (D’Orbigny, 1835) in the central Gulf of California: ecological inferences using stable isotopes. Rapid Commun. Mass. Spectrom. 32, 1225–1236 (2018).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 85.

    Guerreiro, M. et al. Habitat and trophic ecology of Southern Ocean cephalopods from stable isotope analyses. Mar. Ecol. Prog. Ser. 530, 119–134 (2015).

    ADS  CAS  Article  Google Scholar 

  • 86.

    Kato, Y. et al. Stable isotope analysis of the gladius to investigate migration and trophic patterns of the neon flying squid (Ommastrephes bartramii). Fish. Res. 173, 169–174 (2016).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    MIT labs win top recognition for sustainable practices in cold storage management

    Amanda Hubbard honored with Secretary of Energy’s Appreciation Award