Woo, M. K. Permafrost Hydrology (Springer, New York, 2012).
Braun, C., Hardy, D. R., Bradley, R. S. & Retelle, M. J. Streamflow and suspended sediment transfer to Lake Sophia, Cornwallis Island, Nunavut, Canada. Arct. Antarct. Alp. Res. 32(4), 456–465. https://doi.org/10.1080/15230430.2000.12003390 (2000).
Woo, M. K. & McCann, B. S. Climatic variability, climatic change, runoff, and suspended sediment regimes in northern Canada. Phys. Geogr. 15(3), 201–226. https://doi.org/10.1080/02723646.1994.10642513 (1994).
Frey, K. E. & McClelland, J. W. Impacts of permafrost degradation on arctic river biogeochemistry. Hydrol. Process. 23, 169–182. https://doi.org/10.1002/hyp.7196 (2009).
Lafrenière, M. J. et al. Chapter 6: Drivers, trends and uncertainties of changing freshwater systems. In From Science to Policy in the Eastern Canadian Arctic: An Integrated Regional Impact Study (IRIS) of Climate Change and Modernization (eds Bell, T. & Brown, T. M.) (ArcticNet, Halifax, 2018).
Post, E. et al. The polar regions in a 2°C warmer world. Sci. Adv. 5(12), eaaw9883. https://doi.org/10.1126/sciadv.aaq9883 (2019).
Kokelj, S. V., Lantz, T. C., Tunnicliffe, J., Segal, R. & Lacelle, D. Climate-drive thaw of permafrost preserved glacial landscapes, northwestern Canada. Geology 45(4), 371–374. https://doi.org/10.1130/G38626.1 (2017).
Kokelj, S. V. et al. Thawing of massive ground ice in mega slumps drives increases in stream sediment and solute flux across a range of watershed scales. J. Geophys. Res. Earth Surf. 118, 681–692. https://doi.org/10.1002/jgrf.20063 (2013).
Rudy, A. C. A., Lamoureux, S. F., Kokelj, S. V., Smith, I. R. & England, J. H. Accelerating thermokarst transforms ice-cored terrain triggering a downstream cascade to the ocean. Geophys. Res. Lett. 44(21), 11080–11087. https://doi.org/10.1002/2017GL074912 (2017).
Malone, L., Lacelle, D., Kokelj, S. & Clark, I. D. Impacts of hillslope thaw slumps on the geochemistry of permafrost catchments (Stony Creek watershed, NWT, Canada). Chem. Geol. 356, 38–49. https://doi.org/10.1016/j.chemgeo.2013.07.010 (2013).
Kokelj, S. V. & Jorgenson, M. T. Advances in thermokarst research. Permafr. Periglac. Process. 24, 108–119. https://doi.org/10.1002/ppp.1779 (2013).
Lantz, T. C. & Kokelj, S. V. Increasing rates of retrogressive thaw slump activity in the Mackenzie Delta region, N.W.T., Canada. Geophys. Res. Lett. 35, L06502. https://doi.org/10.1029/2007/GL032433 (2008).
Lewkowicz, A. G. & Way, R. G. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat. Commun. 10, 1329. https://doi.org/10.1038/s41467-019-09314-7(2019) (2019).
Bowden, W. B. et al. Sediment and nutrient delivery from thermokarst features in the foothills of the North Slope, Alaska: potential impacts on headwater stream ecosystems. J. Geophys. Res. 113, G02026. https://doi.org/10.1029/2007JG000470 (2008).
Lafrenière, M. J. & Lamoureux, S. F. Effects of changing permafrost conditions on hydrological processes and fluvial fluxes. Earth Sci. Rev. 191, 212–223. https://doi.org/10.1016/j.earscirev.2019.02.018 (2019).
Kokelj, S. V. & Burn, C. R. Geochemistry of the active layer and near-surface permafrost, Mackenzie Delta region, Northwest Territories, Canada. Can. J. Earth Sci. 42(1), 37–48. https://doi.org/10.1139/E04-089 (2005).
Keller, K., Blum, J. D. & Kling, G. W. Stream geochemistry as an indicator of increasing permafrost thaw depth in an arctic watershed. Chem. Geol. 273, 76–81. https://doi.org/10.1016/j.chemgeo.2010.02.013 (2010).
Vonk, J. E. et al. A centennial record of fluvial organic matter input from the discontinuous permafrost catchment of Lake Torneträsk. J. Geophys. Res. 117, G03018. https://doi.org/10.1029/2011JG001887 (2012).
Tank, S. E., Fellman, J. B., Hood, E. & Kritzberg, E. S. Beyond respiration: controls on lateral carbon fluxes across the terrestrial-aquatic interface. Limnol. Oceanogr. Lett. 3, 76–88. https://doi.org/10.1002/lol2.10065 (2018).
Abbott, B. W., Jones, J. B., Godsey, S. E., Larouche, J. R. & Bowden, W. B. Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost. Biogeosciences 12, 3725–3740. https://doi.org/10.5194/bg-12-3725-2015 (2015).
Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 23, GB2023. https://doi.org/10.1029/2008GB003327 (2009).
Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593. https://doi.org/10.5194/bg-11-6573-2014 (2014).
Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179. https://doi.org/10.1038/nature14338 (2015).
Semiletov, I. P. et al. Carbon transport by the Lena River from its headwaters to the Arctic Ocean, with emphasis on fluvial input of terrestrial organic carbon vs. carbon transport by coastal erosion. Biogeosciences 8, 2407–2426. https://doi.org/10.5194/bg-8-2407-2011 (2011).
Schädel, C. et al. Divergent patterns of experimental and model-derived permafrost ecosystem carbon dynamics in response to Arctic warming. Environ. Res. Lett. 13, 105002. https://doi.org/10.1088/1748-9326/aae0ff (2018).
Dean, J. F. et al. East Siberian Arctic inland waters emit mostly contemporary carbon. Nat. Commun. 11, 1627. https://doi.org/10.1038/s41467-020-15511-6 (2020).
O’Donnell, J. A. et al. DOM composition and transformation in boreal forest soils: The effects of temperature and organic-horizon decomposition state. J. Geophys. Res. 121(10), 2727–2744. https://doi.org/10.1002/2016JG003431 (2016).
Tank, S. E. et al. Landscape-level controls on dissolved carbon flux from diverse catchments of the circumboreal. Glob. Biogeochem. Cycles 26, GB0E02. https://doi.org/10.1029/2012GB004299 (2012).
Thienpont, J. R. et al. Biological responses to permafrost thaw slumping in Canadian Arctic lakes. Freshw. Biol. 58, 337–353. https://doi.org/10.1111/fwb.12061 (2012).
Vonk, J. et al. High biolability of ancient permafrost carbon upon thaw. Geophys. Res. Lett. 40(11), 2689–2693. https://doi.org/10.1002/grl.50348 (2013).
Littlefair, C. A., Tank, S. E. & Kokelj, S. V. Retrogressive thaw slumps temper dissolved organic carbon delivery to streams of the Peel Plateau, NWT, Canada. Biogeosciences 14, 5487–5505. https://doi.org/10.5194/bg-14-5487-2017 (2017).
Fouché, J., Lafrenière, M. J., Rutherford, K. & Lamoureux, S. F. Seasonal hydrology and permafrost disturbance impacts on dissolved organic matter composition in High Arctic headwater catchments. Arct. Sci. 3, 378–405. https://doi.org/10.1139/as-2016-0031 (2017).
Lamoureux, S. F. & Lafrenière, M. J. Seasonal fluxes and age of particulate organic carbon exported from Arctic catchments impacted by localized permafrost slope disturbances. Environ. Res. Lett. 9, 045002. https://doi.org/10.1088/1748-9326/9/4/045002 (2014).
Guo, L., Ping, C.-L. & Macdonald, R. W. Mobilization pathways of organic carbon from permafrost to arctic rivers in a changing climate. Geophys. Res. Lett. 34, L13603. https://doi.org/10.1029/2007GL030689 (2007).
Schreiner, K. M., Bianchi, T. S. & Rosenheim, B. E. Evidence for permafrost thaw and transport from an Alaskan North Slope watershed. Geophys. Res. Lett. 41, 3117–3126. https://doi.org/10.1002/2014GL059514 (2014).
Wang, J.-J. et al. Differences in riverine and pond water dissolved organic matter composition and sources in Canadian High Arctic watersheds affected by active layer detachments. Environ. Sci. Technol. 52, 1062–1071. https://doi.org/10.1021/acs.est.7b05506 (2018).
Guo, L. & Macdonald, R. W. Source and transport of terrigenous organic matter in the upper Yukon River: evidence from isotope (δ13C, Δ14C, and δ15N) composition of dissolved, colloidal, and particulate phases. Glob. Biogeochem. Cycles 20, GB2011. https://doi.org/10.1029/2005GB002593 (2006).
Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change 7, 263–267. https://doi.org/10.1038/nclimate3240 (2017).
Bintanja, A. The impact of Arctic warming on increased rainfall. Sci. Rep. 8, 16001. https://doi.org/10.1038/s41598-018-34450-3 (2018).
Lewis, T., Lafrenière, M. J. & Lamoureux, S. F. Hydrochemical and sedimentary responses of paired High Arctic watersheds to unusual climate and permafrost change, Cape Bounty, Melville Island, Canada. Hydrol. Process. 26, 2003–2018. https://doi.org/10.1002/hyp.8335 (2012).
Beel, C. R., Lamoureux, S. F. & Orwin, J. F. Fluvial response to a period of hydrometeorological change and landscape disturbance in the Canadian High Arctic. Geophys. Res. Lett. 45(19), 10446–10455. https://doi.org/10.1029/2018GL079660 (2018).
Roberts, K. E. et al. Climate and permafrost effects on the chemistry and ecosystems of High Arctic lakes. Sci. Rep. 7, 13292. https://doi.org/10.1038/s41598-017-13658-9 (2017).
Lamoureux, S. F., Lafrenière, M. J. & Favaro, E. A. Erosion dynamics following localized permafrost slope disturbances. Geophys. Res. Lett. 41(15), 5499–5505. https://doi.org/10.1002/2014GL060677 (2014).
Lamhonwah, D., Lafrenière, M. J., Lamoureux, S. F. & Wolfe, B. B. Multi-year impacts of permafrost disturbance and thermal perturbation on High Arctic stream chemistry. Arct. Sci. 3, 254–276. https://doi.org/10.1139/as-2016-0024 (2017).
Lamoureux, S. F. & Lafrenière, M. J. More than just snowmelt: integrated watershed science for changing climate and permafrost at the Cape Bounty Arctic Watershed Observatory. WIREs Water 5(1), e1255. https://doi.org/10.1002/wat2.1255 (2017).
Hodgson, D. A., Vincent, J.-S. & Fyles, J. G. Quaternary Geology of Central Melville Island, Northwest Territories. Geological Survey of Canada, Paper 83-16. https://doi.org/10.4095/119784 (1984).
Soil Classification Working Group. The Canadian System of Soil Classification 3rd edn, Vol. 1646 (Agriculture and Agri-Food Canada Publication, Revised, 1998). https://sis.agr.gc.ca/cansis/publications/manuals/1998-cssc-ed3/index.html
Grewer, D. M., Lafrenière, M. J., Lamoureux, S. F. & Simpson, M. J. Redistribution of soil organic matter by permafrost disturbance in the Canadian High Arctic. Biogeochemistry 128(3), 397–415. https://doi.org/10.1007/s10533-016-0215-7 (2016).
Walker, D. A. et al. The Circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282. https://doi.org/10.1111/j.1654-1103.2005.tb02365.x (2005).
Favaro, E. A. & Lamoureux, S. F. Antecedent controls on rainfall runoff response and sediment transport in a High Arctic catchment. Geogr. Ann. Phys. Geogr. 96(4), 433–446. https://doi.org/10.1111/geoa.12063 (2014).
Taylor, J. R. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements (University Science Books, Mill Valley, 1982).
Watt, W. E., Lathem, K. W., Neill, C. R., Richards, T. L. & Rousselle, J. Hydrology of Floods in Canada: A Guide to Planning and Design (National Research Council of Canada, Ottawa, 1989).
Government of Canada – Environment and Natural Resources. Historical Climate Data. www.climat.meteo.gc.ca (2017).
Singh, V. Elementary Hydrology (Prentice Hall, Upper Saddle River, 1992).
Emmerton, C. A., Lesack, L. F. W. & Vincent, W. F. Mackenzie River nutrient delivery to the Arctic Ocean and effects of the Mackenzie Delta during open water conditions. Glob. Biogeochem. Cycles 22, GB1024. https://doi.org/10.1029/2006GB002856 (2008).
Gareis, J. A. L. & Lesack, L. F. W. Fluxes of particulates and nutrients during hydrologically defined seasonal periods in an ice-affect great Arctic river, the Mackenzie. Water Resour. Res. 53, 6109–6132. https://doi.org/10.1002/2017WR020623 (2017).
Kennedy, P., Kennedy, H. & Papadimitriou, S. The effect of acidification on the determination of organic carbon, total nitrogen and their stable isotopic composition in algae and marine sediment. Rapid Commun. Mass Spectrom. 19, 1063–1068. https://doi.org/10.1002/rcm.1889 (2005).
Komada, T., Anderson, M. R. & Dorfmeier, C. L. Carbonate removal from coastal sediments for the determination of organic carbon and its isotopic signatures, δ13C and Δ14C: comparison of fumigation and direct acidification by hydrochloric acid. Limnol. Oceanogr. Methods 6, 254–262. https://doi.org/10.4319/lom.2008.6.254 (2008).
Searcy, J. K. & Hardison, C. H. Double-mass curves. In Manual of Hydrology: Part 1. General Surface-Water Techniques. Water-Supply Paper 1541-B (US Geological Survey, 1960).
Spencer, R. G. M. et al. Detecting the signature of permafrost thaw in Arctic rivers. Geophys. Res. Lett. 42, 2830–2835. https://doi.org/10.1002/2015GL063498 (2015).
Benner, R., Benitez-Nelson, B., Kaiser, K. & Amon, R. M. W. Export of young terrigenous dissolved organic carbon from rivers to the Arctic Ocean. Geophys. Res. Lett. 31, L05305. https://doi.org/10.1029/2003GL019251 (2004).
Raymond, P. et al. Flux and age of dissolved organic carbon exported to the Arctic Ocean: a carbon isotopic study of the five largest Arctic rivers. Glob. Biogeochem. Cycles 21, GB4011. https://doi.org/10.1029/2007GB002934 (2007).
Striegl, R. G., Dornblaser, M. M., Aiken, G. R., Wickland, K. P. & Raymond, P. A. Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers, Alaska 2001–2005. Water Resour. Res. 43, W02411. https://doi.org/10.1029/2006WR005201 (2007).
Drake, T. W. et al. The ephemeral signature of permafrost carbon in an Arctic fluvial network. JGR Biogeosci. 123(5), 1475–1485. https://doi.org/10.1029/2017JG004311 (2018).
Pautler, B. G., Simpson, A. J., McNally, D. J., Lamoureux, S. F. & Simpson, M. J. Arctic permafrost active layer detachments stimulate microbial activity and degradation of soil organic matter. Environ. Sci. Technol. 44, 4076–4082. https://doi.org/10.1021/es903685j (2010).
Grewer, D. M., Lafrenière, M. J., Lamoureux, S. F. & Simspon, M. J. Potential shifts in Canadian High Arctic sedimentary organic matter composition with permafrost active layer detachments. Org. Geochem. 79, 1–13. https://doi.org/10.1016/j.orggeochem.2014.11.007 (2015).
Kalbitz, K., Schwesig, D., Rethemeyer, J. & Matzner, E. Stabilization of dissolved organic matter by sorption to the mineral soil. Soil Biol. Biochem. 37(7), 1319–1331. https://doi.org/10.1016/j.soilbio.2004.11.028 (2005).
Owens, P. N., Petticrew, E. L. & van der Perk, M. Sediment response to catchment disturbances. J. Soils Sediments 10, 591–596. https://doi.org/10.1007/s11368-010-0235-1 (2010).
Grosse, G. et al. Vulnerability of high-latitude soil organic carbon in North America to disturbance. J. Geophys. Res. 116, G00K06. https://doi.org/10.1029/2010JG001507 (2011).
Vonk, J. E. et al. Reviews and syntheses: effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 12, 7129–7167. https://doi.org/10.5194/bg-12-7129-2015 (2015).
Schuur, E. A. G. et al. Expert assessment of vulnerability of permafrost carbon to climate change. Clim. Change 119, 359–374. https://doi.org/10.1007/s10584-013-0730-7 (2013).
Vonk, J. E., van Dongen, B. E. & Gustafsson, Ö. Selective preservation of old organic carbon fluvially released from sub-Arctic soils. Geophys. Res. Lett. 37, L11605. https://doi.org/10.1029/2010GL042909 (2010).
Gordeev, V. V. & Kravchishina, M. D. River flux of dissolved organic carbon (DOC) and particulate organic carbon (POC) to the Arctic Ocean: what are the consequences of the global changes. In Influence of Climate Change on the Changing Arctic and sub-Arctic Conditions (eds Nihoul, J. C. J. & Kostianoy, A. G.) 145–161 (Springer, Berlin, 2009).
Rudy, A. C. A., Lamoureux, S. F., Treitz, P. & Collingwood, A. Identifying permafrost slope disturbance using multi-temporal optical satellite images and change detection techniques. Cold Reg. Sci. Technol. 88, 37–49. https://doi.org/10.1016/j.coldregions.2012.12.008 (2013).
Source: Ecology - nature.com