in

Discovering the bacteriome of Vitis vinifera cv. Pinot Noir in a conventionally managed vineyard

  • 1.

    International Organisation of Vine and Wine Intergovernmental Organisation (OIV) 2019 Statistical Report on World Vitiviniculture, http://www.oiv.int/public/medias/6782/oiv-2019-statistical-report-on-world-vitiviniculture.pdf (2019).

  • 2.

    International Organisation of Vine and Wine Intergovernmental Organisation (OIV) Distribution of the world’s grapevine varieties, http://www.oiv.int/public/medias/5888/en-distribution-of-the-worlds-grapevine-varieties.pdf (2017).

  • 3.

    Vitulo, N. et al. A deep survey of alternative splicing in grape reveals changes in the splicing machinery related to tissue, stress condition and genotype BMC Plant Biol. 14, Article Number: 99 (2014).

  • 4.

    Prezelj, N. et al. Metabolic consequences of infection of grapevine (Vitis vinifera L.) cv. “Modra frankinja” with Flavescence Doree Phytoplasma. Front. Plant Sci. 7, Article Number: 711 (2016).

  • 5.

    Savoi, S. et al. Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.). BMC Plant Biol. 16, Article Number: 67 (2016).

  • 6.

    Yildirim, K., Yagci, A., Sucu, S. & Tunc, S. Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations. Plant Physiol. Biochem. 127, 256–268 (2018).

  • 7.

    Rosenberrg, I. Z. & Rosenberg, E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol. Rev. 32, 723–735 (2008).

  • 8.

    Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A. & Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 206, 1196–1206 (2015).

  • 9.

    Bonfante, A. et al. A dynamic viticultural zoning to explore the resilience of terroir concept under climate change. Sci. Tot. Environ. 624, 294–308 (2018).

  • 10.

    Cheng, G., He, Y.-N., Yue, T.-X., Wang, J. & Zhang, Z.-W. Effects of climatic conditions and soil properties on Cabernet Sauvignon berry growth and anthocyanin profiles. Molecules 19, 13683–13703 (2014).

  • 11.

    Zerihun, A., McClymont, L., Lanyon, D., Goodwin, I. & Gibberd, M. Deconvoluting effects of vine and soil properties on grape berry composition. J. Sci. Food Agric. 95, 193–203 (2015).

  • 12.

    Berlanas, C. et al. The fungal and bacterial rhizosphere microbiome associated with grapevine rootstock genotypes in mature and young vineyards. Front. Microbiol. 10, 1142, https://doi.org/10.3389/fmicb.2019.01142 (2019).

  • 13.

    Marasco, R., Rolli, E., Fusi, M., Michoud, G. & Daffonchio, D. Grapevine rootstocks shape underground bacterial microbiome and networking but not potential functionality. Microbiome 6, 3, https://doi.org/10.1186/s40168-017-0391-2 (2018).

  • 14.

    Lazcano, C., Gomez-Brandon, M., Revilla, P. & Dominguez, J. Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function. Biol. Fertil. Soils 49, 723–733 (2013).

  • 15.

    Vitulo, N. et al. Bark and grape microbiome of Vitis vinifera: influence of geographic patterns and agronomic management on bacterial diversity. Front. Microbiol. 9, 3203, https://doi.org/10.3389/fmicb.2018.03203 (2019).

  • 16.

    Grangeteau, C. et al. Wine microbiology is driven by vineyard and winery anthropogenic factors. Microbiol. Biotechnol. 10, 354–370 (2017).

  • 17.

    Bokulich, N. A., Thorngate, J. H., Richardson, P. M. & Mills, D. A. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. PNAS USA 111, E139–E148 (2014).

  • 18.

    Van Leeuwen, C. & Seguin, G. The concept of terroir in viticulture. J. Wine Res. 17, 1–10 (2006).

    • Article
    • Google Scholar
  • 19.

    Gladstones, J. Introduction and definition of terroir. In: Wine, Terroir and Climate Change, ed. M. Deves (Kent Town, SA: Wakefield Press), 1-4 (2011).

  • 20.

    Sigler, W. V. & Turco, R. F. The impact of chlorothalonil application on soil bacterial and fungal populations as assessed by denaturing gradient gel electrophoresis. Appl. Soil Ecol. 21, 107–118 (2002).

    • Article
    • Google Scholar
  • 21.

    Rivera-Becerril, F. et al. Impact of a pesticide cocktail (fenhexamid, folpel, deltamethrin) on the abundance of Glomeromycota in two agricultural soils. Sci. Tot. Environ. 577, 84–93 (2017).

  • 22.

    Muñoz-Leoz, B., Garbisu, C., Antigüedad, I. & Ruiz-Romera, E. Fertilization can modify the non-target effects of pesticides on soil microbial communities. Soil Biol. Biochem. 48, 125–134 (2012).

  • 23.

    Canfora, L. et al. Vineyard microbiome variations during different fertilisation practices revealed by 16s rRNA gene sequencing. Appl. Soil Ecol. 125, 71–80 (2018).

    • Article
    • Google Scholar
  • 24.

    Chi-Chu, L. Effect of pesticides on soil microbial community. J. Environ. Sci. Health, Part B 45, 348–359 (2010).

    • Google Scholar
  • 25.

    Novello, G. et al. The rhizosphere bacterial microbiota of Vitis vinifera cv. Pinot Noir in an Integrated Pest Management vineyard. Front. Microbiol. 8, 1528 (2017).

  • 26.

    Bona, E. et al. A metaproteomic characterization of the Vitis vinifera rhizosphere. FEMS Microbiol. Ecol. 95, 1–16 (2019).

    • Google Scholar
  • 27.

    Rodriguez-R., L. M. & Konstantinidis, K. T. Estimating coverage in metagenomic data sets and why it matters. ISME J. 8, 2349 (2014).

  • 28.

    Mougel, C. et al. Dynamic of the genetic structure of bacterial and fungal communities at different developmental stages of Medicago truncatula Gaertn. cv. Jemalong line J5. New Phytol. 170, 165–175 (2006).

  • 29.

    Berg, G. & Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 68, 1–13 (2009).

  • 30.

    Chaparro, J. M. et al. Exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8(2), 1–10 (2013).

  • 31.

    Marques, J. M. et al. Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants. FEMS Microbiol. Ecol. 88, 424–35 (2014).

  • 32.

    Wagner, M. R. et al. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nature Comm. 7, 12151 (2016).

  • 33.

    Jacobsen, C. S. & Hjelmsø, M. H. Agricultural soils, pesticides and microbial activity. Curr. Opin. Biotechnol. 27, 15–20 (2014).

  • 34.

    Nettles, R. et al. Influence of pesticide seed treatments on rhizosphere fungal and bacterial communities and leaf fungal endophyte communities in maize and soybean. Appl. Soil Ecol. 102, 61–69 (2016).

    • Article
    • Google Scholar
  • 35.

    Likar, M., Stres, B., Rusjan, D., Potisek, M. & Regvar, M. Ecological and conventional viticulture gives rise to distinct fungal and bacterial microbial communities in vineyard soils. Appl. Soil Ecol. 113, 86–95 (2017).

    • Article
    • Google Scholar
  • 36.

    Dini-Andreote, F., Nunes da Rocha, U., Araùjo, W. L., Azevedo, J. L. & Van Overbeek, L. S. Effect of bacterial inoculation, plant genotype and developmental stage on root-associated and endophytic bacterial communities in potato (Solanum tuberosum). Ant. Leeuwen. Internat. J. Gen. Molec. Microbiol. 97, 389–399 (2010).

    • Google Scholar
  • 37.

    Sasse, J., Martinoia, E. & Northen, T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 23, 25–41 (2018).

  • 38.

    O’Donnell, A. G., Seasman, M., Macrae, A., Waite, I. & Davies, J. T. Plants and fertilizers as drivers of change in microbial community structure and function in soils. Plant Soil 232, 135–145 (2001).

    • Article
    • Google Scholar
  • 39.

    Muñoz-Leoz, B., Garbisu, C., Antigüedad, I. & Ruiz-Romera, E. Fertilization can modify thenon-target effects of pesticides on soil microbial communities. Soil Biol. Biochem. 48, 125–134 (2012).

  • 40.

    Mijangos, I., Pérez, R., Albizu, I. & Garbisu, C. Effects of fertilization and tillage on soil biological parameters. Enz. Micr. Technol. 40, 100–106 (2006).

  • 41.

    Černohlávková, J. Effects of selected environmental pollutants on soil microbial community in laboratory and field studies. Dissertation Thesis, RECETOX—Research Centre for Environmental Chemistry and Ecotoxicology, Brno, Czech Republic (2009).

  • 42.

    Franklin, R. B. & Mills, A. L. Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field. FEMS Microbiol. Ecol. 44, 335–346 (2003).

  • 43.

    Nunan, N., Wu, K., Young, I. M., Crawford, J. W. & Ritz, K. Spatial distribution of bacterial communities and their relationship with the micro-architecture of soil. FEMS Microbiol. Ecol. 44, 203–215 (2003).

  • 44.

    Tecon, R. & Or, D. Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbial. Rev. 41, 599–623 (2017).

  • 45.

    Karagöz, K., Ates, F., Karagöz, H., Kotan, R. & Çakmakçi, R. Characterization of plant growth-promoting traits of bacteria isolated from the rhizosphere of grapevine grown in alkaline and acidic soils. Eur. J. Soil Biol. 50, 144–150 (2012).

  • 46.

    Campisano, A. et al. Bacterial endophytic communities in the grapevine depend on pest management. PLoS One 9, e02527–14 (2014).

    • Google Scholar
  • 47.

    Bulgari, D., Casati, P., Quaglino, F. & Bianco, P. A. Endophytic bacterial community of grapevine leaves influenced by sampling date and phytoplasma infection process. BMC Microbiol. 14, 198 (2014).

  • 48.

    Vega-Avila, A. D. et al. Bacterial communities in the rhizosphere of Vitis vinifera L. cultivated under distinct agricultural practices in Argentina. Ant. Van Leeuwen. Internat. J. Gen. Mol. Microbiol. 107, 575–588 (2015).

  • 49.

    Ahn., J. H. et al. Characterization of the bacterial and archaeal communities in rice field soils subjected to long-term fertilization practices. J. Microbiol. 50, 754–765 (2012).

  • 50.

    Jenkins, S. N. et al. Actinobacterial community dynamics in long term managed grasslands. Ant. van Leeuwen. Internat. J. Gen. Mol. Microbiol. 95, 319–334 (2009).

    • Article
    • Google Scholar
  • 51.

    Daquiado, A. R. et al. Pyrosequencing analysis of bacterial community diversity in long-term fertilized paddy field soil. Appl. Soil Ecol. 108, 84–91 (2016).

    • Article
    • Google Scholar
  • 52.

    Lesaulnier, C. et al. Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Environ. Microbiol. 10, 926–941 (2008).

  • 53.

    Berendesen., R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).

  • 54.

    Philippot, L., Raaijmakers, J., Lemanceau, P. & van der Putten, W. H. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11, 789–799 (2013).

  • 55.

    Albuquerque, L. et al. Gaiella occulta gen. nov., sp. nov., a novel representative of a deep branching phylogenetic lineage within the class Actinobacteria and proposal of Gaiellaceae fam. nov. and Gaiellales ord. nov. Syst. Appl. Microbiol. 34, 595–599 (2011).

  • 56.

    Baudoin, E., Benizri, E. & Guckert, A. Impact of growth stage on the bacterial community structure along maize roots, as determined by metabolic and genetic fingerprinting. Appl. Soil Ecol. 19, 135–145 (2002).

    • Article
    • Google Scholar
  • 57.

    Houlden, A., Timms-Wilson, T. M., Day, M. J. & Bailey, M. J. Influence of plant developmental stage on microbial community structure and activity in the rhizosphere of three field crops. FEMS Microbiol. Ecol 65, 193–201 (2008).

  • 58.

    Micallef, S. A., Channer, S., Shiaris, M. P. & Colón-Carmona, A. Plant age and genotype impact the progression of bacterial community succession in the Arabidopsis rhizosphere. Plant Signal. Behav. 4, 777–780 (2009).

  • 59.

    Gregory, P. J. Roots, rhizosphere and soil: The route to a better understanding of soil science? Eur. J. Soil Sci. 57, 2–12 (2006).

    • Article
    • Google Scholar
  • 60.

    Newman, M. M. et al. Glyphosate effects on soil rhizosphere-associated bacterial communities. Sci. Tot. Environ. 543, 155–160 (2016).

  • 61.

    Donn, S., Kirkegaard, J. A., Perera, G., Richardson, A. E. & Watt, M. Evolution of bacterial communities in the wheat crop rhizosphere. Environ. Microbiol. 17, 610–621 (2015).

  • 62.

    Barea, J. M., Pozo, M. J., Azcón, R. & Azcón-Aguilar, C. Microbial co-operation in the rhizosphere. J. Exp. Bot. 56, 1761–1778 (2005).

  • 63.

    Parke, J. L. & Gurian-Sherman, D. Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Ann. Rev. Phytopathol. 39, 225–258 (2001).

  • 64.

    Perrin, E. et al. Exploring the HME and HAE1 efflux systems in the genus Burkholderia. BMC Evolut. Biol. 10, 164 (2010).

  • 65.

    Krechel, A., Faupel, A., Hallmann, J., Ulrich, A. & Berg, G. Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwwod. Can. J. Microbiol. 48, 772–786 (2002).

  • 66.

    Young, C. & Otto, M. Staphylococcus epidermidis infections. Micr. Infect. 4, 481–489 (2002).

    • Article
    • Google Scholar
  • 67.

    Takeuchi, F. et al. Whole-genome sequencing of Staphylococcus haemolyrticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species. J. Bacteriol. 187, 7292–7308 (2005).

  • 68.

    Tyler, H. L. & Triplett, E. W. Plants as a habitat for beneficial and/or human pathogenic bacteria. Ann. Rev. Phytopathol. 46, 53–73 (2008).

  • 69.

    Berg, G. et al. Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl. Environ. Microbiol. 68, 3328–3338 (2002).

  • 70.

    Berg, G., Eberl, L. & Hartmann, A. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ. Microbiol. 7, 1673–1685 (2005).

  • 71.

    Berg, G., Erlacher, A., Smalla, K. & Krause, R. Vegetable microbiomes: is there a connection among opportunistic infections, human health and our ‘gut feeling’? Micr. Biotechnol. 7, 487–495 (2014).

    • Article
    • Google Scholar
  • 72.

    Gupta, C. P., Sharma, A., Dubey, R. C. & Maheshwari, D. K. Effect of metal ions on growth of Pseudomonas aeruginosa and siderophores and protein function. J. Exp. Biol. 39, 1318–1321 (2001).

    • CAS
    • Google Scholar
  • 73.

    Mehnaz, S. et al. Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. Can. J. Microbiol. 47, 110–117 (2001).

  • 74.

    Sessitsch, A., Reiter, B. & Berg, G. Endophytic bacterial communities of field-grown potato lines and their plant growth-promoting abilities. Can. J. Microbiol. 50, 239–249 (2004).

  • 75.

    Yousaf, S. et al. Pyrosequencing detects human and animal pathogenic taxa in the grapevine endosphere. Front. Microbiol. 5, 237 (2014).

    • Article
    • Google Scholar
  • 76.

    Campisano, A. et al. Interkingdom transfer of the acne-causing agent, Propionibacterium acnes, from human to grapevine. Mol. Biol. Evol. 31, 1059–1065 (2014).

  • 77.

    Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703 (1991).

  • 78.

    Wang, Y. & Qian, P. Y. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomics studies. PLoS ONE 4, e7401 (2009).

  • 79.

    Ewing, B., Hillier, L., Wendl, M. & Green, P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175–185 (1998).

  • 80.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

  • 81.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2018).

  • 82.

    Dhariwal, A. et al. MicrobiomeAnalyst – a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucl. Acids Res. 45, W180–188, https://doi.org/10.1093/nar/gkx295 (2017).


  • Source: Ecology - nature.com

    Invasive earthworms unlock arctic plant nitrogen limitation

    Efficacy of locally-available cleaning methods in removing biofilms from taps and surfaces of household water storage containers