in

Discovering the indigenous microbial communities associated with the natural fermentation of sap from the cider gum Eucalyptus gunnii

  • 1.

    Legras, J. L., Merdinoglu, D., Cornuet, J. M. & Karst, F. Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol. Ecol. 16, 2091–2102 (2007).

    CAS  Article  Google Scholar 

  • 2.

    McGovern, P. E. et al. Fermented beverages of pre- and proto-historic China. Proc. Natl. Acad. Sci. U.S.A. 101, 17593–17598. https://doi.org/10.1073/pnas.0407921102 (2004).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 3.

    Cavalieri, D., McGovern, P., Hartl, D., Mortimer, R. & Polsinelli, M. Evidence for S. cerevisiae fermentation in ancient wine. J. Mol. Evol. 57, S226–S232 (2003).

    ADS  CAS  Article  Google Scholar 

  • 4.

    McGovern, P., Hartung, U., Badler, V., Glusker, D. & Exner, L. The beginnings of winemaking and viniculture in the ancient Near East and Egypt. Expedition 39, 3–21 (1997).

    Google Scholar 

  • 5.

    Dudley, R. Ethanol, fruit ripening, and the historical origins of human alcoholism in primate frugivory. Integr. Comp. Biol. 44, 315–323 (2004).

    CAS  Article  Google Scholar 

  • 6.

    Dudley, R. Fermenting fruit and the historical ecology of ethanol ingestion: is alcoholism in modern humans an evolutionary hangover?. Addiction 97, 381–388. https://doi.org/10.1046/j.1360-0443.2002.00002.x (2002).

    Article  PubMed  Google Scholar 

  • 7.

    Carrigan, M. A. et al. Hominids adapted to metabolize ethanol long before human-directed fermentation. Proc. Natl. Acad. Sci. U.S.A. 112, 458–463. https://doi.org/10.1073/pnas.1404167111 (2015).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 8.

    Alba-Lois, L. & Segal-Kischinevzky, C. Yeast fermentation and the making of beer and wine https://www.nature.com/scitable/topicpage/yeast-fermentation-and-the-making-of-beer-14372813 (2010).

  • 9.

    Malacarne, M., Martuzzi, F., Summer, A. & Mariani, P. Protein and fat composition of mare’s milk: some nutritional remarks with reference to human and cow’s milk. Int. Dairy J. 12, 869–877. https://doi.org/10.1016/S0958-6946(02)00120-6 (2002).

    CAS  Article  Google Scholar 

  • 10.

    Brady, M. First Taste. How Indigenous Australians Learned About Grog (Alcohol Education and Rehabilitation Foundation Ltd, Canberra, 2008).

    Google Scholar 

  • 11.

    Brady, M. & McGrath, V. Making Tuba in the Torres Strait islands: the cultural diffusion and geographic mobility of an alcoholic drink. J. Pac. Hist. 45, 315–330. https://doi.org/10.1080/00223344.2010.530811 (2010).

    Article  PubMed  Google Scholar 

  • 12.

    Varela, C. The impact of non-Saccharomyces yeasts in the production of alcoholic beverages. Appl. Microbiol. Biotechnol. 100, 9861–9874. https://doi.org/10.1007/s00253-016-7941-6 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 13.

    Jolly, N. P., Varela, C. & Pretorius, I. S. Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res. 14, 215–237. https://doi.org/10.1111/1567-1364.12111 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 14.

    Steinkraus, K. H. Handbook of Indigenous Fermented Foods, Second Edition, Revised and Expanded (Marcel Dekker, New York, 1995).

    Google Scholar 

  • 15.

    Tamang, J. P., Watanabe, K. & Holzapfel, W. H. Review: diversity of microorganisms in global fermented foods and beverages. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.00377 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 16.

    Bahiru, B., Mehari, T. & Ashenafi, M. Yeast and lactic acid flora of tej, an indigenous Ethiopian honey wine: variations within and between production units. Food Microbiol. 23, 277–282. https://doi.org/10.1016/j.fm.2005.05.007 (2006).

    CAS  Article  PubMed  Google Scholar 

  • 17.

    Vallejo, J. A. et al. Atypical yeasts identified as Saccharomyces cerevisiae by MALDI-TOF MS and gene sequencing are the main responsible of fermentation of chicha, a traditional beverage from Peru. Syst. Appl. Microbiol. 36, 560–564. https://doi.org/10.1016/j.syapm.2013.09.002 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 18.

    Puerari, C., Magalhães-Guedes, K. T. & Schwan, R. F. Physicochemical and microbiological characterization of chicha, a rice-based fermented beverage produced by Umutina Brazilian Amerindians. Food Microbiol. 46, 210–217. https://doi.org/10.1016/j.fm.2014.08.009 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 19.

    Escalante, A. et al. Characterization of bacterial diversity in Pulque, a traditional Mexican alcoholic fermented beverage, as determined by 16S rDNA analysis. FEMS Microbiol. Lett. 235, 273–279. https://doi.org/10.1016/j.femsle.2004.04.045 (2004).

    CAS  Article  PubMed  Google Scholar 

  • 20.

    Lappe-Oliveras, P. et al. Yeasts associated with the production of Mexican alcoholic nondistilled and distilled Agave beverages. FEMS Yeast Res. 8, 1037–1052. https://doi.org/10.1111/j.1567-1364.2008.00430.x (2008).

    CAS  Article  PubMed  Google Scholar 

  • 21.

    Jung, M. J., Nam, Y. D., Roh, S. W. & Bae, J. W. Unexpected convergence of fungal and bacterial communities during fermentation of traditional Korean alcoholic beverages inoculated with various natural starters. Food Microbiol. 30, 112–123. https://doi.org/10.1016/j.fm.2011.09.008 (2012).

    Article  PubMed  Google Scholar 

  • 22.

    Greppi, A. et al. Determination of yeast diversity in ogi, mawe, gowe and tchoukoutou by using culture-dependent and -independent methods. Int. J. Food Microbiol. 165, 84–88. https://doi.org/10.1016/j.ijfoodmicro.2013.05.005 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 23.

    Spitaels, F. et al. The microbial diversity of traditional spontaneously fermented lambic beer. PLoS ONE https://doi.org/10.1371/journal.pone.0095384 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Tapsoba, F., Legras, J. L., Savadogo, A., Dequin, S. & Traore, A. S. Diversity of Saccharomyces cerevisiae strains isolated from Borassus akeassii palm wines from Burkina Faso in comparison to other African beverages. Int. J. Food Microbiol. 211, 128–133. https://doi.org/10.1016/j.ijfoodmicro.2015.07.010 (2015).

    Article  PubMed  Google Scholar 

  • 25.

    Bokulich, N. A., Bamforth, C. W. & Mills, D. A. Brewhouse-resident microbiota are responsible for multi-stage fermentation of American coolship ale. PLoS ONE 7, e35507. https://doi.org/10.1371/journal.pone.0035507 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 26.

    Bokulich, N. A., Thorngate, J. H., Richardson, P. M. & Mills, D. A. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc. Natl. Acad. Sci. U.S.A. 111, E139–E148. https://doi.org/10.1073/pnas.1317377110 (2014).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 27.

    Siren, K. et al. Taxonomic and functional characterization of the microbial community during spontaneous in vitro fermentation of Riesling must. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.00697 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 28.

    Morgan, H. H., du Toit, M. & Setati, M. E. The grapevine and wine microbiome: insights from high-throughput amplicon sequencing. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.00820 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 29.

    Williams, K. J. & Potts, B. M. The natural distribution of Eucalyptus species in Tasmania. Tasforests 8, 39–165 (1996).

    Google Scholar 

  • 30.

    Calder, J. A. & Kirkpatrick, J. B. Climate change and other factors influencing the decline of the Tasmanian cider gum (Eucalyptus gunnii). Aust. J. Bot. 56, 684–692. https://doi.org/10.1071/BT08105 (2008).

    Article  Google Scholar 

  • 31.

    Sanger, J. C., Davidson, N. J., O’Grady, A. P. & Close, D. C. Are the patterns of regeneration in the endangered Eucalyptus gunnii ssp. divaricata shifting in response to climate?. Austral. Ecol. 36, 612–620. https://doi.org/10.1111/j.1442-9993.2010.02194.x (2011).

    Article  Google Scholar 

  • 32.

    Lahti, L. & Shetty, S. Tools for microbiome analysis in R. Version 1.9.1 https://microbiome.github.com/microbiome (2017).

  • 33.

    Morrison-Whittle, P. & Goddard, M. R. Quantifying the relative roles of selective and neutral processes in defining eukaryotic microbial communities. ISME J. 9, 2003–2011. https://doi.org/10.1038/ismej.2015.18 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Morrison-Whittle, P. & Goddard, M. R. From vineyard to winery: a source map of microbial diversity driving wine fermentation. Environ. Microbiol. 20, 75–84. https://doi.org/10.1111/1462-2920.13960 (2018).

    Article  PubMed  Google Scholar 

  • 35.

    Brooker, M. I. H. A Key to Eucalypts in Britain and Ireland. (Forestry Commission Booklet 50: The Stationery Office, 1983).

  • 36.

    Forrest, M. & Moore, T. Eucalyptus gunnii: a possible source of bioenergy?. Biomass Bioenerg. 32, 978–980. https://doi.org/10.1016/j.biombioe.2008.01.010 (2008).

    CAS  Article  Google Scholar 

  • 37.

    Guimarães, R. et al. Aromatic plants as a source of important phytochemicals: vitamins, sugars and fatty acids in Cistus ladanifer, Cupressus lusitanica and Eucalyptus gunnii leaves. Ind. Crop Prod. 30, 427–430. https://doi.org/10.1016/j.indcrop.2009.08.002 (2009).

    CAS  Article  Google Scholar 

  • 38.

    Bugarin, D. et al. Essential oil of Eucalyptus gunnii hook. As a novel source of antioxidant, antimutagenic and antibacterial agents. Molecules 19, 19007–19020. https://doi.org/10.3390/molecules191119007 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 39.

    Leborgne, N. et al. Introduction of specific carbohydrates into Eucalyptus gunnii cells increases their freezing tolerance. Eur. J. Biochem. 229, 710–717. https://doi.org/10.1111/j.1432-1033.1995.0710j.x (1995).

    CAS  Article  PubMed  Google Scholar 

  • 40.

    Stuckel, J. G. & Low, N. H. The chemical composition of 80 pure maple syrup samples produced in North America. Food Res. Int. 29, 373–379. https://doi.org/10.1016/0963-9969(96)00000-2 (1996).

    CAS  Article  Google Scholar 

  • 41.

    Taylor, M. W., Tsai, P., Anfang, N., Ross, H. A. & Goddard, M. R. Pyrosequencing reveals regional differences in fruit-associated fungal communities. Environ. Microbiol. 16, 2848–2858 (2014).

    CAS  Article  Google Scholar 

  • 42.

    Pinto, C. et al. Wine fermentation microbiome: a landscape from different Portuguese wine appellations. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.00905 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 43.

    Miura, T., Sanchez, R., Castaneda, L. E., Godoy, K. & Barbosa, O. Is microbial terroir related to geographic distance between vineyards?. Environ. Microbiol. Rep. 9, 742–749. https://doi.org/10.1111/1758-2229.12589 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 44.

    Knight, S. J., Karon, O. & Goddard, M. R. Small scale fungal community differentiation in a vineyard system. Food Microbiol. https://doi.org/10.1016/j.fm.2019.103358 (2019).

    Article  PubMed  Google Scholar 

  • 45.

    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688. https://doi.org/10.1126/science.1256688 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 46.

    Lin, Y. T., Whitman, W. B., Coleman, D. C. & Chiu, C. Y. Effects of reforestation on the structure and diversity of bacterial communities in subtropical low mountain forest soils. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01968 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 47.

    Grangeteau, C. et al. Wine microbiology is driven by vineyard and winery anthropogenic factors. Microb. Biotechnol. 10, 354–370. https://doi.org/10.1111/1751-7915.12428 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 48.

    Burns, K. N. et al. Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: differentiation by geographic features. Soil Biol. Biochem. 91, 232–247. https://doi.org/10.1016/j.soilbio.2015.09.002 (2015).

    CAS  Article  Google Scholar 

  • 49.

    Portillo, M. D. C., Franquès, J., Araque, I., Reguant, C. & Bordons, A. Bacterial diversity of Grenache and Carignan grape surface from different vineyards at Priorat wine region (Catalonia, Spain). Int. J. Food Microbiol. 219, 56–63. https://doi.org/10.1016/j.ijfoodmicro.2015.12.002 (2016).

    Article  Google Scholar 

  • 50.

    Castaneda, L. E. & Barbosa, O. Metagenomic analysis exploring taxonomic and functional diversity of soil microbial communities in Chilean vineyards and surrounding native forests. PeerJ 5, e3098. https://doi.org/10.7717/peerj.3098 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 51.

    Setati, M. E., Jacobson, D. & Bauer, F. F. Sequence-based analysis of the Vitis vinifera L. cv Cabernet Sauvignon grape must Mycobiome in three South African vineyards employing distinct agronomic systems. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.01358 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 52.

    Miura, T. et al. Shifts in the composition and potential functions of soil microbial communities responding to a no-tillage practice and bagasse mulching on a sugarcane plantation. Biol. Fertil. Soils 52, 307–322. https://doi.org/10.1007/s00374-015-1077-1 (2016).

    CAS  Article  Google Scholar 

  • 53.

    Miura, T., Sanchez, R., Castaneda, L. E., Godoy, K. & Barbosa, O. Shared and unique features of bacterial communities in native forest and vineyard phyllosphere. Ecol. Evol. 9, 3295–3305. https://doi.org/10.1002/ece3.4949 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 54.

    Hendgen, M. et al. Effects of different management regimes on microbial biodiversity in vineyard soils. Sci. Rep. https://doi.org/10.1038/s41598-018-27743-0 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 55.

    Montecchia, M. S. et al. Pyrosequencing reveals changes in soil bacterial communities after conversion of Yungas forests to agriculture. PLoS ONE 10, 18. https://doi.org/10.1371/journal.pone.0119426 (2015).

    CAS  Article  Google Scholar 

  • 56.

    Gleeson, D., Mathes, F., Farrell, M. & Leopold, M. Environmental drivers of soil microbial community structure and function at the Avon River Critical Zone Observatory. Sci. Total Environ. 571, 1407–1418. https://doi.org/10.1016/j.scitotenv.2016.05.185 (2016).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 57.

    Kemler, M. et al. Ion Torrent PGM as tool for fungal community analysis: a case study of Endophytes in Eucalyptus grandis reveals high taxonomic diversity. PLoS ONE https://doi.org/10.1371/journal.pone.0081718 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 58.

    Piškur, J., Rozpędowska, E., Polakova, S., Merico, A. & Compagno, C. How did Saccharomyces evolve to become a good brewer?. Trends Genet. 22, 183–186. https://doi.org/10.1016/j.tig.2006.02.002 (2006).

    CAS  Article  PubMed  Google Scholar 

  • 59.

    Lloyd, K. G., Steen, A. D., Ladau, J., Yin, J. Q. & Crosby, L. Phylogenetically novel uncultured microbial cells dominate Earth microbiomes. Msystems https://doi.org/10.1128/mSystems.00055-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Steen, A. D. et al. High proportions of bacteria and archaea across most biomes remain uncultured. ISME J. 13, 3126–3130. https://doi.org/10.1038/s41396-019-0484-y (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 61.

    Thrash, J. C. Culturing the uncultured: Risk versus reward. Msystems https://doi.org/10.1128/mSystems.00130-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 62.

    Varela, C., Pizarro, F. & Agosin, E. Biomass content governs fermentation rate in nitrogen-deficient wine musts. Appl. Environ. Microbiol. 70, 3392–3400. https://doi.org/10.1128/Aem.70.6.3392-3400.2004 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 63.

    Parker, M. et al. Factors contributing to interindividual variation in retronasal odor perception from aroma glycosides: The tole of odorant sensory detection threshold, oral microbiota, and hydrolysis in saliva. J. Agric. Food Chem. https://doi.org/10.1021/acs.jafc.9b05450 (2019).

    Article  PubMed  Google Scholar 

  • 64.

    Bokulich, N. A. & Mills, D. A. Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities. Appl. Environ. Microbiol. 79, 2519–2526. https://doi.org/10.1128/AEM.03870-12 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 65.

    Sternes, P. R., Lee, D., Kutyna, D. R. & Borneman, A. R. A combined meta-barcoding and shotgun metagenomic analysis of spontaneous wine fermentation. bioRxiv https://doi.org/10.1101/098061 (2017).

    Article  Google Scholar 

  • 66.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 67.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. https://doi.org/10.14806/ej.17.1.200 (2011).

    Article  Google Scholar 

  • 68.

    Magoc, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963. https://doi.org/10.1093/bioinformatics/btr507 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 69.

    Mahe, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm: robust and fast clustering method for amplicon-based studies. PeerJ 2, e593. https://doi.org/10.7717/peerj.593 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 70.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. https://doi.org/10.1038/nmeth.f.303 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 71.

    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 72.

    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5.4 https://CRAN.R-project.org/package=vegan (2019).

  • 73.

    Li, C., Yu, G. & Zhu, C. microbiomeViz—an R package for visualizing microbiome data https://github.com/lch14forever/microbiomeViz (2018).

  • 74.

    Kahle, D. & Wickham, H. ggmap: spatial visualization with ggplot2. R J. 5, 144–161 (2013).

    Article  Google Scholar 

  • 75.

    Kassambara, A. ggpubr: ‘ggplot2’ based publication eady plots. R package version 0.2 https://CRAN.R-project.org/package=ggpubr (2018).

  • 76.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (SpringerVerlag, New York, 2009).

    Google Scholar 

  • 77.

    Team, R. C. R: a language and environment for statistical computing https://www.R-project.org/ (2017).


  • Source: Ecology - nature.com

    Environmental stability impacts the differential sensitivity of marine microbiomes to increases in temperature and acidity

    Assessing the effect of wind farms in fauna with a mathematical model