in

Dispersal-induced instability in complex ecosystems

  • 1.

    Odum, E. P. & Barrett, G. W. Fundamentals of Ecology (Saunders, Philadelphia, 1953).

    Google Scholar 

  • 2.

    Elton, C. S. Ecology of Invasions by Animals And Plants (Methuen, London, 1958).

    Google Scholar 

  • 3.

    MacArthur, R. Fluctuations of animal populations and a measure of community stability. Ecology 36, 533–536 (1955).

    Article  Google Scholar 

  • 4.

    Paine, R. T. Food web complexity and species diversity. Am. Nat. 100, 65–75 (1966).

    Article  Google Scholar 

  • 5.

    Landi, P., Minoarivelo, H. O., Å, Brännström, Hui, C. & Dieckmann, U. Complexity and stability of ecological networks: a review of the theory. Popul. Ecol. 60, 319–345 (2018).

    Article  Google Scholar 

  • 6.

    McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    May, R. M. Will a large complex system be stable? Nature 238, 413–414 (1972).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 8.

    May, R. M. Stability in multispecies community models. Math. Biosci. 12, 59–79 (1971).

    MathSciNet  MATH  Article  Google Scholar 

  • 9.

    Namba, T. Multi-faceted approaches toward unravelling complex ecological networks. Popul. Ecol. 57, 3–19 (2015).

    Article  Google Scholar 

  • 10.

    Justus, J. A case study in concept determination: Ecological diversity. in Philosophy of Ecology, Handbook of the Philosophy of Science, Vol. 11, (eds deLaplante, K., Brown, B. & Peacock, K. A.) (North-Holland, Amsterdam, 2011) pp. 147–168.

  • 11.

    Grilli, J., Rogers, T. & Allesina, S. Modularity and stability in ecological communities. Nat. Commun. 7, 1–10 (2016).

    Article  CAS  Google Scholar 

  • 12.

    Allesina, S. & Tang, S. The stability–complexity relationship at age 40: a random matrix perspective. Popul. Ecol. 57, 63–75 (2015).

    Article  Google Scholar 

  • 13.

    Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 14.

    Hutchinson, M. C. Seeing the forest for the trees: putting multilayer networks to work for community ecology. Funct. Ecol. 33, 206–217 (2019).

    Article  Google Scholar 

  • 15.

    Pilosof, S., Porter, M. A., Pascual, M. & Kéfi, S. The multilayer nature of ecological networks. Nat. Ecol. Evolut. 1, 1–9 (2017).

    Article  Google Scholar 

  • 16.

    Stone, L. The feasibility and stability of large complex biological networks: a random matrix approach. Sci. Rep. 8, 1–12 (2018).

    CAS  Article  Google Scholar 

  • 17.

    Gibbs, T., Grilli, J., Rogers, T. & Allesina, S. Effect of population abundances on the stability of large random ecosystems. Phys. Rev. E 98, 022410 (2018).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Fyodorov, Y. V. & Khoruzhenko, B. A. Nonlinear analogue of the may-wigner instability transition. Proc. Natl Acad. Sci. USA 113, 6827–6832 (2016).

    MathSciNet  CAS  PubMed  MATH  Article  Google Scholar 

  • 19.

    Gross, T., Rudolf, L., Levin, S. A. & Dieckmann, U. Generalized models reveal stabilizing factors in food webs. Science 325, 747–750 (2009).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Berlow, E. L. et al. Interaction strengths in food webs: issues and opportunities. J. Anim. Ecol. 73, 585–598 (2004).

    Article  Google Scholar 

  • 21.

    Chesson, P. & Huntly, N. The roles of harsh and fluctuating conditions in the dynamics of ecological communities. Am. Nat. 150, 519–553 (1997).

    CAS  PubMed  Article  Google Scholar 

  • 22.

    McNaughton, S. J. Diversity and stability of ecological communities: a comment on the role of empiricism in ecology. Am. Nat. 111, 515–525 (1977).

    Article  Google Scholar 

  • 23.

    Thébault, E. & Loreau, M. Trophic interactions and the relationship between species diversity and ecosystem stability. Am. Nat. 166, E95–E114 (2005).

    PubMed  Article  Google Scholar 

  • 24.

    Tilman, D. The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80, 1455–1474 (1999).

    Google Scholar 

  • 25.

    Gravel, D., Massol, F. & Leibold, M. A. Stability and complexity in model meta-ecosystems. Nat. Commun. 7, 12457 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Turing, A. M. The chemical basis of morphogenesis. Bull. Math. Biol. 52, 153–197 (1990).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Hanski, I. Metapopulation dynamics. Nature 396, 41–49 (1998).

    ADS  CAS  Article  Google Scholar 

  • 28.

    Hanski, I. Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos 87, 209–219 (1999).

  • 29.

    Hassell, M. P., Comins, H. N. & May, R. M. Spatial structure and chaos in insect population dynamics. Nature 353, 255–258 (1991).

    ADS  Article  Google Scholar 

  • 30.

    Hassell, M. P., Comins, H. N. & May, R. M. Species coexistence and self-organizing spatial dynamics. Nature 370, 290–292 (1994).

    ADS  Article  Google Scholar 

  • 31.

    Levin, S. A. & Segel, L. A. Hypothesis for origin of planktonic patchiness. Nature 259, 659 (1976).

    ADS  Article  Google Scholar 

  • 32.

    Brechtel, A., Gramlich, P., Ritterskamp, D., Drossel, B. & Gross, T. Master stability functions reveal diffusion-driven pattern formation in networks. Phys. Rev. E 97, 032307 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 33.

    Cross, M. & Hohenberg, P. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993).

    ADS  CAS  MATH  Article  Google Scholar 

  • 34.

    Grilli, J. et al. Feasibility and coexistence of large ecological communities. Nat. Commun. 8, 14389 (2017).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • 35.

    Allesina, S. et al. Predicting the stability of large structured food webs. Nat. Commun. 6, 1–6 (2015).

    Article  CAS  Google Scholar 

  • 36.

    Neubert, M. G., Kot, M. & Lewis, M. A. Dispersal and pattern formation in a discrete-time predator-prey model. Theor. Popul. Biol. 48, 7–43 (1995).

    MATH  Article  Google Scholar 

  • 37.

    Rietkerk, M. & Van de Koppel, J. Regular pattern formation in real ecosystems. Trends Ecol. Evolut. 23, 169–175 (2008).

    Article  Google Scholar 

  • 38.

    HilleRisLambers, R., Rietkerk, M., van den Bosch, F., Prins, H. H. T. & de Kroon, H. Vegetation pattern formation in semi-arid grazing systems. Ecology 82, 50–61 (2001).

    Article  Google Scholar 

  • 39.

    Levin, S. Dispersion and population interactions. Am. Nat. 108, 207–228 (1974).

    Article  Google Scholar 

  • 40.

    Murray, J. D. Mathematical Biology II: Spatial Models and Biomedical Applications (Springer: New York, 2001).

    Google Scholar 

  • 41.

    Baron, J. W. & Galla, T. Stochastic fluctuations and quasipattern formation in reaction-diffusion systems with anomalous transport. Phys. Rev. E 99, 052124 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 42.

    Kuramoto, Y. Diffusion-induced chaos in reaction systems. Progr. Theor. Phys. Suppl. 64, 346–367 (1978).

    ADS  CAS  Article  Google Scholar 

  • 43.

    Pascual, M. Diffusion-induced chaos in a spatial predator–prey system. Proc. R. Soc. Lond. Ser. B 251, 1–7 (1993).

    ADS  Article  Google Scholar 

  • 44.

    Rietkerk, M., Dekker, S. C., de Ruiter, P. C. & van de Koppel, J. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 45.

    Rietkerk, M. & van de Koppel, J. Regular pattern formation in real ecosystems. Trends Ecol. Evolut. 23, 169–175 (2008).

    Article  Google Scholar 

  • 46.

    van de Koppel, J. et al. Experimental evidence for spatial self-organization and its emergent effects in mussel bed ecosystems. Science 322, 739–742 (2008).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 47.

    Meron, E. Pattern-formation approach to modelling spatially extended ecosystems. Ecol. Model. 234, 70–82 (2012).

    Article  Google Scholar 

  • 48.

    Liu, Q. et al. Pattern formation at multiple spatial scales drives the resilience of mussel bed ecosystems. Nat. Commun. 5, 5234 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 49.

    Karig, D. et al. Stochastic turing patterns in a synthetic bacterial population. Proc. Natl Acad. Sci. USA 115, 6572–6577 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 50.

    Lengyel, I. & Epstein, I. A chemical approach to designing turing patterns in reaction-diffusion systems. Proc. Natl Acad. Sci. USA 89, 3977–3979 (1992).

    ADS  CAS  PubMed  MATH  Article  Google Scholar 

  • 51.

    Castets, V., Dulos, E., Boissonade, J. & De Kepper, P. Experimental evidence of a sustained standing turing-type nonequilibrium chemical pattern. Phys. Rev. Lett. 64, 2953–2956 (1990).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 52.

    Barabás, G., Michalska-Smith, M. J. & Allesina, S. Self-regulation and the stability of large ecological networks. Nat. Ecol. Evolut. 1, 1870–1875 (2017).

    Article  Google Scholar 

  • 53.

    Tao, T. & Vu, V. Random matrices: universality of local eigenvalue statistics up to the edge. Commun. Math. Phys. 298, 549–572 (2010).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  • 54.

    Tao, T. et al. Random matrices: universality of ESDs and the circular law. Ann. Probab. 38, 2023–2065 (2010).

    MathSciNet  MATH  Article  Google Scholar 

  • 55.

    O’Sullivan, J. D., Knell, R. J. & Rossberg, A. G. Metacommunity-scale biodiversity regulation and the self-organised emergence of macroecological patterns. Ecol. Lett. 22, 1428–1438 (2019).

    PubMed  Article  Google Scholar 

  • 56.

    Gotelli, N. J. et al. Community-level regulation of temporal trends in biodiversity. Sci. Adv. 3, e1700315 (2017).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Magurran, A. E. et al. Divergent biodiversity change within ecosystems. Proc. Natl Acad. Sci. USA 115, 1843–1847 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 58.

    Brown, J. H., Ernest, S. K. M., Parody, J. M. & Haskell, J. P. Regulation of diversity: maintenance of species richness in changing environments. Oecologia 126, 321–332 (2001).

    ADS  PubMed  Article  Google Scholar 

  • 59.

    Parody, J. M., Cuthbert, F. J. & Decker, E. H. The effect of 50 years of landscape change on species richness and community composition. Glob. Ecol. Biogeogr. 10, 305–313 (2001).

    Article  Google Scholar 

  • 60.

    Haake, F., Izrailev, F., Lehmann, N., Saher, D. & Sommers, H.-J. Statistics of complex levels of random matrices for decaying systems. Z. Phys. B Condens. Matter 88, 359–370 (1992).

    ADS  Article  Google Scholar 

  • 61.

    Sommers, H.-J., Crisanti, A., Sompolinsky, H. & Stein, Y. Spectrum of large random asymmetric matrices. Phys. Rev. Lett. 60, 1895–1898 (1988).

    ADS  MathSciNet  CAS  PubMed  Article  Google Scholar 

  • 62.

    O’Rourke, S. et al. Low rank perturbations of large elliptic random matrices. Electron. J. Probab. 19, 1–65 (2014).

  • 63.

    Süli, E. & Mayers, D. F. An Introduction to Numerical Analysis (Cambridge University Press, 2003).

  • 64.

    Baron, J. W. & Galla, T. Dispersal-induced instability in complex ecosystems. GitHub https://doi.org/10.5281/zenodo.4068257 (2020).


  • Source: Ecology - nature.com

    Spatio-temporal processes drive fine-scale genetic structure in an otherwise panmictic seabird population

    Diversification of methanogens into hyperalkaline serpentinizing environments through adaptations to minimize oxidant limitation