Bohonak, A. J. & Jenkins, D. G. Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecol. Lett. 6, 783–796 (2003).
Clobert, J., Baguette, M., Benton, T. G. & Bullock, J. M. Dispersal Ecology and Evolution (Oxford Univ. Press, 2012).
Heino, J. et al. Metacommunity organisation, spatial extent and dispersal in aquatic systems: Patterns, processes and prospects. Freshw. Biol. 60, 845–869 (2015).
Barton, P. S. et al. Guidelines for using movement science to inform biodiversity policy. Environ. Manage. 56, 791–801 (2015).
Heino, J. et al. Integrating dispersal proxies in ecological and environmental research in the freshwater realm. Environ. Rev. 25, 334–349 (2017).
Rundle, S. D., Bilton, D. T. & Foggo, A. in Body Size: The Structure and Function of Aquatic Ecosystems (eds. Hildrew, A. G., Raffaelli, D. G. & Edmonds-Brown, R.) 186–209 (Cambridge Univ. Press, 2007).
Macneale, K. H., Peckarsky, B. L. & Likens, G. E. Stable isotopes identify dispersal patterns of stonefly populations living along stream corridors. Freshw. Biol. 50, 1117–1130 (2005).
Troast, D., Suhling, F., Jinguji, H., Sahlén, G. & Ware, J. A global population genetic study of Pantala flavescens. PLoS One 11, e0148949 (2016).
French, S. K. & McCauley, S. J. The movement responses of three libellulid dragonfly species to open and closed landscape cover. Insect Conserv. Divers. 12, 437–447 (2019).
Arribas, P. et al. Dispersal ability rather than ecological tolerance drives differences in range size between lentic and lotic water beetles (Coleoptera: Hydrophilidae). J. Biogeogr. 39, 984–994 (2012).
Lancaster, J. & Downes, B. J. Dispersal traits may reflect dispersal distances, but dispersers may not connect populations demographically. Oecologia 184, 171–182 (2017).
Lancaster, J. & Downes, B. J. Aquatic Entomology (Oxford Univ. Press, 2013).
Stevens, V. M. et al. Dispersal syndromes and the use of life-histories to predict dispersal. Evol. Appl. 6, 630–642 (2013).
Outomuro, D. & Johansson, F. Wing morphology and migration status, but not body size, habitat or Rapoport’s rule predict range size in North-American dragonflies (Odonata: Libellulidae). Ecography 42, 309–320 (2019).
Tonkin, J. D. et al. The role of dispersal in river network metacommunities: patterns, processes, and pathways. Freshw. Biol. 63, 141–163 (2018).
Brown, B. L. & Swan, C. M. Dendritic network structure constrains metacommunity properties in riverine ecosystems. J. Anim. Ecol. 79, 571–580 (2010).
Wikelski, M. et al. Simple rules guide dragonfly migration. Biol. Lett. 2, 325–329 (2006).
Schmidt-Kloiber, A. & Hering, D. An online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecol. Indic. 53, 271–282, www.freshwaterecology.info (2015).
Serra, S. R. Q., Cobo, F., Graça, M. A. S., Dolédec, S. & Feio, M. J. Synthesising the trait information of European Chironomidae (Insecta: Diptera): towards a new database. Ecol. Indic. 61, 282–292 (2016).
Tachet, H., Richoux, P., Bournaud, M. & Usseglio-Polatera, P. Invertébrés d’Eau Douce: Systématique, Biologie, Écologie (CNRS Éditions, 2010).
Vieira, N. K. M. et al. A Database of Lotic Invertebrate Traits for North America (U.S. Geological Survey Data Series 187, 2006).
Chevenet, F., Dolédec, S. & Chessel, D. A fuzzy coding approach for the analysis of long-term ecological data. Freshw. Biol. 31, 295–309 (1994).
Schmera, D., Podani, J., Heino, J., Erös, T. & Poff, N. L. R. A proposed unified terminology of species traits in stream ecology. Freshw. Sci. 34, 823–830 (2015).
Lancaster, J., Downes, B. J. & Arnold, A. Lasting effects of maternal behaviour on the distribution of a dispersive stream insect. J. Anim. Ecol. 80, 1061–1069 (2011).
Jenkins, D. G. et al. Does size matter for dispersal distance? Glob. Ecol. Biogeogr. 16, 415–425 (2007).
Harrison, R. G. Dispersal polymorphisms in insects. Annu. Rev. Ecol. Syst. 11, 95–118 (1980).
Graham, E. S., Storey, R. & Smith, B. Dispersal distances of aquatic insects: upstream crawling by benthic EPT larvae and flight of adult Trichoptera along valley floors. New Zeal. J. Mar. Freshw. Res. 51, 146–164 (2017).
Hoffsten, P. O. Site-occupancy in relation to flight-morphology in caddisflies. Freshw. Biol. 49, 810–817 (2004).
Bonada, N. & Dolédec, S. Does the Tachet trait database report voltinism variability of aquatic insects between Mediterranean and Scandinavian regions? Aquat. Sci. 80, 1–11 (2018).
Sarremejane, R. et al. DISPERSE, a trait database to assess the dispersal potential of aquatic macroinvertebrates. figshare https://doi.org/10.6084/m9.figshare.c.5000633 (2020).
Lévêque, C., Balian, E. V. & Martens, K. An assessment of animal species diversity in continental waters. Hydrobiologia 542, 39–67 (2005).
Green, A. J. & Figuerola, J. Recent advances in the study of long-distance dispersal of aquatic invertebrates via birds. Divers. Distrib. 11, 149–156 (2005).
Maasri, A. A global and unified trait database for aquatic macroinvertebrates: the missing piece in a global approach. Front. Environ. Sci. 7, 1–3 (2019).
Cañedo-Argüelles, M. et al. Dispersal strength determines meta-community structure in a dendritic riverine network. J. Biogeogr. 42, 778–790 (2015).
Datry, T. et al. Metacommunity patterns across three Neotropical catchments with varying environmental harshness. Freshw. Biol. 61, 277–292 (2016).
Swan, C. M. & Brown, B. L. Metacommunity theory meets restoration: isolation may mediate how ecological communities respond to stream restoration. Ecol. Appl. 27, 2209–2219 (2017).
Sarremejane, R., Mykrä, H., Bonada, N., Aroviita, J. & Muotka, T. Habitat connectivity and dispersal ability drive the assembly mechanisms of macroinvertebrate communities in river networks. Freshw. Biol. 62, 1073–1082 (2017).
Jacobson, B. & Peres-Neto, P. R. Quantifying and disentangling dispersal in metacommunities: How close have we come? How far is there to go? Landsc. Ecol. 25, 495–507 (2010).
Sarremejane, R. et al. Do metacommunities vary through time? Intermittent rivers as model systems. J. Biogeogr. 44, 2752–2763 (2017).
Datry, T., Moya, N., Zubieta, J. & Oberdorff, T. Determinants of local and regional communities in intermittent and perennial headwaters of the Bolivian Amazon. Freshw. Biol. 61, 1335–1349 (2016).
Cid, N. et al. A metacommunity approach to improve biological assessments in highly dynamic freshwater ecosystems. Bioscience 70, 427–438 (2020).
Datry, T., Bonada, N. & Heino, J. Towards understanding the organisation of metacommunities in highly dynamic ecological systems. Oikos 125, 149–159 (2016).
Hermoso, V., Cattarino, L., Kennard, M. J., Watts, M. & Linke, S. Catchment zoning for freshwater conservation: refining plans to enhance action on the ground. J. Appl. Ecol. 52, 940–949 (2015).
Thuiller, W. et al. A road map for integrating eco-evolutionary processes into biodiversity models. Ecol. Lett. 16, 94–105 (2013).
Mendes, P., Velazco, S. J. E., de Andrade, A. F. A. & De Marco, P. Dealing with overprediction in species distribution models: How adding distance constraints can improve model accuracy. Ecol. Model. 431, 109180 (2020).
Willis, S. G. et al. Integrating climate change vulnerability assessments from species distribution models and trait-based approaches. Biol. Conserv. 190, 167–178 (2015).
Cooper, J. C. & Soberón, J. Creating individual accessible area hypotheses improves stacked species distribution model performance. Glob. Ecol. Biogeogr. 27, 156–165 (2018).
Markovic, D. et al. Europe’s freshwater biodiversity under climate change: distribution shifts and conservation needs. Divers. Distrib. 20, 1097–1107 (2014).
Bush, A. & Hoskins, A. J. Does dispersal capacity matter for freshwater biodiversity under climate change? Freshw. Biol. 62, 382–396 (2017).
Bohonak, A. J. Dispersal, gene flow, and population structure. Q. Rev. Biol. 74, 21–45 (1999).
Dijkstra, K.-D. B., Monaghan, M. T. & Pauls, S. U. Freshwater biodiversity and aquatic insect diversification. Annu. Rev. Entomol. 59, 143–163 (2014).
Múrria, C. et al. Local environment rather than past climate determines community composition of mountain stream macroinvertebrates across Europe. Mol. Ecol. 26, 6085–6099 (2017).
Statzner, B. & Bêche, L. A. Can biological invertebrate traits resolve effects of multiple stressors on running water ecosystems? Freshw. Biol. 55, 80–119 (2010).
Strayer, D. L. & Dudgeon, D. Freshwater biodiversity conservation: recent progress and future challenges. J. North Am. Benthol. Soc. 29, 344–358 (2010).
Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).
R Core Team. R: A language and environment for statistical computing. https://www.r-project.org/ (2020).
Dray, S. & Dufour, A.-B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 1, 1–20 (2007).
Source: Ecology - nature.com