in

Distinct ecotypes within a natural haloarchaeal population enable adaptation to changing environmental conditions without causing population sweeps

  • 1.

    Viver T, Orellana LH, Díaz S, Urdiain M, Ramos‐Barbero MD, González‐Pastor JE, et al. Predominance of deterministic microbial community dynamics in salterns exposed to different light intensities. Environ Microbiol. 2019;21:4300–15.

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci USA. 2005;102:13950–5.

    CAS  PubMed  Article  Google Scholar 

  • 3.

    Amann R, Rosselló-Móra R. After all, only millions? MBio. 2016;7:e00999–16.

    PubMed  PubMed Central  Google Scholar 

  • 4.

    Konstantinidis KT, Ramette A, Tiedje JM. The bacterial species definition in the genomic era. Philos Trnas R Soc Lond B Biol Sci. 2006;361:1929–40.

    Article  Google Scholar 

  • 5.

    Shapiro BJ, Polz MF. Ordering microbial diversity into ecologicaly and genetically cohesive units. Trends Microbiol. 2014;22:235–47.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    McInerney JO, McNally A, O’Connell MJ. Why prokaryotes have pangenomes. Nat Microbiol. 2017;2:17040.

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Andreani NA, Hesse E, Vos M. Prokaryote genome fluidity is dependent on effective population size. ISMEJ. 2017;11:1719–21.

    CAS  Article  Google Scholar 

  • 8.

    Cohan FM. What are bacterial species? Annu Rev Microbiol. 2002;56:457–87.

    CAS  PubMed  Article  Google Scholar 

  • 9.

    Lan R, Reeves PR. When does a clone deserve a name? A perspective on bacterial species based on population genetics. Trends Microbiol. 2001;9:419–24.

    CAS  PubMed  Article  Google Scholar 

  • 10.

    Fraser C, Alm EJ, Polz MF, Spratt BG, Hanage WP. The bacterial species challenge: making sense of genetic and ecological diversity. Science. 2009;323:741–46.

    CAS  PubMed  Article  Google Scholar 

  • 11.

    Vázquez DP, Simberloff D. Ecological specialization and susceptibility to disturbance: conjectures and refutations. Am Nat. 2002;159:606–23.

    PubMed  Article  Google Scholar 

  • 12.

    Prosser JI, Bohannan BJM, Curtis TP, Ellis RJ, Firestone MK, Freckleton RP, et al. The role of ecological theory in microbial ecology. Nat Rev Microbiol. 2007;5:384–92.

    CAS  PubMed  Article  Google Scholar 

  • 13.

    Shade A, Peter H, Allison SD, Baho DL, Berga M, Bürgmann H, et al. Fundamentals of microbial community resistance and resilience. Front Microbiol. 2012;3:417.

    PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Rodriguez-R LM, Overholt WA, Hagan C, Huettel M, Kostka JE, Konstantinidis KT. Microbial community successional patterns in beach sands impacted by the Deepwater Horizon oil spill. ISME J. 2015;9:1928–40.

    PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Petraitis PS, Latham RE, Niesenbaum RA. The maintenance of species diversity by disturbance. Q Rev Biol. 1989;64:393–418.

    Article  Google Scholar 

  • 16.

    Narasingarao P, Podell S, Ugalde JA, Brochier-Armanet C, Emerson JB, Brocks JJ, et al. De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J. 2012;6:81–93.

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Antón J, Rosselló-Móra R, Rodriguez-Valera F, Amann R. Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol. 2000;66:3052–57.

    PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Gomariz M, Martínez-García M, Santos F, Rodriguez F, Capella-Gutiérrez S, Gabaldón T, et al. From community approaches to single-cell genomics: the Discovery of ubiquitous hyperhalophilic Bacteroidetes generalists. ISME J. 2015;9:1–16.

    Article  CAS  Google Scholar 

  • 19.

    Mora-Ruiz MR, Font-Verdera F, Díaz-Gil C, Urdiain M, Rodríguez-Valdecantos G, González G, et al. Moderate halophilic bacteria colonizing the phylloplane of halophytes of the subfamily Salicornioideae (Amaranthaceae). Syst Appl Microbiol. 2015;38:406–16.

    CAS  Article  Google Scholar 

  • 20.

    Antón J, Lucio M, Peña A, Cifuentes A, Brito-Echeverría J, Moritz, F, et al. High metabolomic microdiversity within co-occurring isolates of the extremely halophilic bacterium Salinibacter ruber. PLoS ONE. 2013;8:e64701.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 21.

    Conrad EC, Viver T, Hatt JK, Rosselló-Móra R, Konstantinidis KT. Unrestricted but ecologically-important gene-content diversity within a natural sequence-discrete population as revealed by sequencing of 112 isolates. 2020. In review.

  • 22.

    Cuadros-Orellana S, Martin-Cuadrado AB, Legault B, D’Auria G, Zhaxybayeva O, Papke RT, et al. Genomic plasticity in prokaryotes: the case of the square haloarchaeon. ISME J. 2007;1:235–45.

    CAS  PubMed  Article  Google Scholar 

  • 23.

    Konopka A, Lindemann S, Fredrickson J. Dynamics in microbial communities: unraveling mechanisms to identify principles. ISME J. 2015;9:1488–95.

    PubMed  Article  Google Scholar 

  • 24.

    Millán MM, Estrela MJ, Miró J. Rainfall components: variability and spatial distribution in a Mediterranean Area (Valencia Region). J Clim. 2005;18:2682–705.

    Article  Google Scholar 

  • 25.

    Santos F, Moreno-Paz M, Meseguer I, López C, Rosselló-Móra R, Parro V, et al. Metatranscriptomic analysis of extremely halophilic viral communities. ISME J. 2011;5:1621–33.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Begon M, Townsend CR, Harper JL, editors. Ecology: from individuals to ecosystems. 4th ed. Malten, MA, USA: Blackwell Publishing Ltd; 2006.

  • 27.

    Rodriguez-R LM, Konstantinidis KT. Nonpareil: a redundancy-based approach to assess the level of coverage in metagenomics datasets. Bioinform. 2014;30:629–35.

    CAS  Article  Google Scholar 

  • 28.

    Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 2016;17:132.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 29.

    Oksanen J, Kindt R, Legendre P.O’Hara B. Vegan: community ecology package. Com Ecol Pack. 2007;10:631–37.

  • 30.

    Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35:7188–96.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. ARB; a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Wu YW, Tang YH, Tringe SG, Simmons BA, Singer SW. MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome. 2014;2:26.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Rodriguez-R LM, Gunturu S, Harvey WT, Rosselló-Móra R, Tiedje JM, Cole JR, et al. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res. 2018;43:W282–8.

    Article  CAS  Google Scholar 

  • 34.

    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.

    CAS  PubMed  Article  Google Scholar 

  • 35.

    Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.

    PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.

    Article  CAS  Google Scholar 

  • 37.

    UniProt Consortium. Uniprot: a hub for protein information. Nucleic Acids Res. 2015;43:D204–12.

    Article  CAS  Google Scholar 

  • 38.

    Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Prepr. 2016;4:e1900v1.

    Google Scholar 

  • 39.

    Caro-Quintero A, Konstantinidis KT. Bacterial species may exist, metagenomics reveal. Environ Microbiol. 2012;14:347–55.

    CAS  PubMed  Article  Google Scholar 

  • 40.

    Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 2007;57:81–91.

    CAS  PubMed  Article  Google Scholar 

  • 41.

    Viver T, Orellana LH, Hatt JK, Urdiain M, Díaz S, Richter M, et al. The low diverse gastric microbiome of the jellyfish Cotylorhiza tuberculata is dominated by four novel taxa. Environ Microbiol. 2017;19:3039–58.

    PubMed  Article  Google Scholar 

  • 42.

    Haynes WM, Lide DR, Bruno TJ, editors. CRC handbook of chemistry and physics, 94th ed. London, UK: CRC Press; 2013. p. 4–89.

  • 43.

    Griebler C, Lueders T. Microbial biodiversity in groundwater ecosystems. Freshw Biol. 2009;54:649–77.

    Article  Google Scholar 

  • 44.

    Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol. 2005;187:6258–64.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Oren A. Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst. 2008;4:2.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 46.

    Pedrós-Alió C. Marine microbial diversity: can it be determined? Trends Micribiol. 2006;14:257–63.

    Article  CAS  Google Scholar 

  • 47.

    Azua-Bustos A, Fairén AG, González-Silva C, Ascaso C, Carrizo D, Fernández-Martínez MÁ, et al. Unprecedented rains decimate surface microbial communities in the hyperarid core of the Atacama Desert. Sci Rep. 2018;8:16706.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Allison SD, Martiny JBH. Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci U S A. 2008;105:11512–19.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Uritskiy G, Getsin S, Munn A, Gomez-Silva B, Davila A, Glass B, et al. Halophilic microbial community compositional shift after a rare rainfall in the Atacama Desert. ISME J. 2019;13:2737–49.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Ghai R, Pašić L, Fernández AB, Martin-Cuadrado AB, Mizuno CM, McMahon KD, et al. New abundant microbial groups in aquatic hypersaline environments. Sci Rep Nat 2011;1:135.

    Article  CAS  Google Scholar 

  • 51.

    Burns DG, Janssen PH, Itoh T, Minegishi H, Usami R, Kamekura M, et al. Natronomonas moolapensis sp. nov., non-alkaliphilic isolates recovered from a solar saltern crystallizer pond, and emended description of the genus Natronomonas. Int J Syst Evol Microbiol. 2010;60:1173–76.

    CAS  PubMed  Article  Google Scholar 

  • 52.

    López-Pérez M, Ghai R, Leon MJ, Rodríguez-Olmos Á, Copa-Patiño JL, Soliveri J, et al. Genomes of “Spiribacter”, a streamlined, successful halophilic bacterium. BMC Genom. 2013;14:787.

    Article  CAS  Google Scholar 

  • 53.

    Martin-Cuadrado AB, Pašić L, Rodriguez-Valera F. Diversity of the cell-wall associated genomic island of the archaeon Haloquadratum walsbyi. BMC Genom. 2015;16:603.

    Article  CAS  Google Scholar 

  • 54.

    Mirete S, Mora-Ruiz MF, Lamprecht-Grandío M, de Figueras CG, Rosselló-Móra R, González-Pastor J. Salt resistance genes revealed by functional metagenomics from brines and moderate-salinity rhizosphere within a hypersaline environment. Front Microbiol. 2015;6:1121.

    PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Cray JA, Bell AN, Bhaganna P, Mswaka AY, Timson DJ, Hallsworth JE. The biology of habitat dominance; can microbes behave as weeds? Microb Biotechnol. 2013;6:453–92.

    PubMed  PubMed Central  Article  Google Scholar 


  • Source: Ecology - nature.com

    Making smart thermostats more efficient

    Morphological complexity affects the diversity of marine microbiomes