in

Distinct response of gross primary productivity in five terrestrial biomes to precipitation variability

  • 1.

    Sun, F., Roderick, M. L. & Farquhar, G. D. Rainfall statistics, stationarity, and climate change. Proc. Natl Acad. Sci. USA 115, 2305–2310 (2018).

    CAS  Article  Google Scholar 

  • 2.

    Polade, S. D., Pierce, D. W., Cayan, D. R., Gershunov, A. & Dettinger, M. D. The key role of dry days in changing regional climate and precipitation regimes. Sci. Rep. 4, 1–8 (2014).

    Google Scholar 

  • 3.

    Pascale, S., Lucarini, V., Feng, X., Porporato, A. & ul Hasson, S. Projected changes of rainfall seasonality and dry spells in a high greenhouse gas emissions scenario. Clim. Dyn. 46, 1331–1350 (2016).

    Article  Google Scholar 

  • 4.

    Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C. & Sanderson, B. M. Precipitation variability increases in a warmer climate. Sci. Rep. 7, 1–9 (2017).

    CAS  Article  Google Scholar 

  • 5.

    Sun, F., Roderick, M. L. & Farquhar, G. D. Changes in the variability of global land precipitation. Geophys. Res. Lett. 39, 1–6 (2012).

    CAS  Article  Google Scholar 

  • 6.

    Feng, X., Porporato, A. & Rodriguez-Iturbe, I. Changes in rainfall seasonality in the tropics. Nat. Clim. Change 3, 811–815 (2013).

    Article  Google Scholar 

  • 7.

    Rajah, K. et al. Changes to the temporal distribution of daily precipitation. Geophys. Res. Lett. 41, 8887–8894 (2014).

    Article  Google Scholar 

  • 8.

    Sloat, L. L. et al. Increasing importance of precipitation variability on global livestock grazing lands. Nat. Clim. Change 8, 214–218 (2018).

    Article  Google Scholar 

  • 9.

    Huxman, T. E. et al. Convergence across biomes to a common rain-use efficiency. Nature 429, 651–654 (2004).

    CAS  Article  Google Scholar 

  • 10.

    Medvigy, D., Wofsy, S. C., Munger, J. W. & Moorcroft, P. R. Responses of terrestrial ecosystems and carbon budgets to current and future environmental variability. Proc. Natl Acad. Sci. USA 107, 8275–8280 (2010).

    CAS  Article  Google Scholar 

  • 11.

    Knapp, A. K. et al. Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science 298, 2202–2205 (2002).

    CAS  Article  Google Scholar 

  • 12.

    Guan, K. et al. Continental-scale impacts of intra-seasonal rainfall variability on simulated ecosystem responses in Africa. Biogeosciences 11, 6939–6954 (2014).

    Article  Google Scholar 

  • 13.

    Ross, I. et al. How do variations in the temporal distribution of rainfall events affect ecosystem fluxes in seasonally water-limited Northern Hemisphere shrublands and forests? Biogeosciences 9, 1007–1024 (2012).

    Article  Google Scholar 

  • 14.

    Ray, D. K., Gerber, J. S., Macdonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 1–9 (2015).

    Article  CAS  Google Scholar 

  • 15.

    Dawson, T. E. & Goldsmith, G. R. The value of wet leaves. New Phytol. 219, 1156–1169 (2018).

    Article  Google Scholar 

  • 16.

    Konings, A. G., Williams, A. P. & Gentine, P. Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation. Nat. Geosci. 10, 284–288 (2017).

    CAS  Article  Google Scholar 

  • 17.

    Zeppel, M. J. B., Wilks, J. V. & Lewis, J. D. Impacts of extreme precipitation and seasonal changes in precipitation on plants. Biogeosciences 11, 3083–3093 (2014).

    Article  Google Scholar 

  • 18.

    Wilcox, K. R. et al. Asymmetric responses of primary productivity to precipitation extremes: a synthesis of grassland precipitation manipulation experiments. Glob. Change Biol. 23, 4376–4385 (2017).

    Article  Google Scholar 

  • 19.

    Zhang, Y. et al. Extreme precipitation patterns and reductions of terrestrial ecosystem production across biomes. J. Geophys. Res. Biogeosci. 118, 148–157 (2013).

    Article  Google Scholar 

  • 20.

    Guo, Q. et al. Spatial variations in aboveground net primary productivity along a climate gradient in Eurasian temperate grassland: effects of mean annual precipitation and its seasonal distribution. Glob. Change Biol 18, 3624–3631 (2012).

    Article  Google Scholar 

  • 21.

    Gherardi, L. A. & Sala, O. E. Effect of interannual precipitation variability on dryland productivity: a global synthesis. Glob. Change Biol 25, 269–276 (2019).

    Article  Google Scholar 

  • 22.

    Ciemer, C. et al. Higher resilience to climatic disturbances in tropical vegetation exposed to more variable rainfall. Nat. Geosci. 12, 174–179 (2019).

    CAS  Article  Google Scholar 

  • 23.

    Knapp, A. K. et al. Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience 58, 811–821 (2008).

    Article  Google Scholar 

  • 24.

    Newman, E. A., Kennedy, M. C., Falk, D. A. & McKenzie, D. Scaling and complexity in landscape ecology. Front. Ecol. Evol. 7, 293 (2019).

    Article  Google Scholar 

  • 25.

    Beguería, S., Vicente-Serrano, S. M., Tomás-Burguera, M. & Maneta, M. Bias in the variance of gridded data sets leads to misleading conclusions about changes in climate variability. Int. J. Climatol. 36, 3413–3422 (2016).

    Article  Google Scholar 

  • 26.

    Joiner, J. et al. Estimation of terrestrial global gross primary production (GPP) with satellite data-driven models and eddy covariance flux data. Remote Sens. 10, 1–38 (2018).

    Article  Google Scholar 

  • 27.

    Jung, M. et al. Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach. Biogeosciences 17, 1343–1365 (2020).

    Article  Google Scholar 

  • 28.

    Zhang, Y. et al. A global moderate resolution dataset of gross primary production of vegetation for 2000-2016. Sci. Data 4, 165–170 (2017).

    Google Scholar 

  • 29.

    D’Onofrio, D., Sweeney, L., von Hardenberg, J. & Baudena, M. Grass and tree cover responses to intra-seasonal rainfall variability vary along a rainfall gradient in African tropical grassy biomes. Sci. Rep. 9, 1–10 (2019).

    Article  CAS  Google Scholar 

  • 30.

    Zhou, W. et al. Plant waterlogging/flooding stress responses: from seed germination to maturation. Plant Physiol. Biochem. 148, 228–236 (2020).

    CAS  Article  Google Scholar 

  • 31.

    McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178, 719–739 (2008).

    Article  Google Scholar 

  • 32.

    Tolk, J. A., Howell, T. A., Steiner, J. L., Krieg, D. R. & Schneider, A. D. Role of transpiration suppression by evaporation of intercepted water in improving irrigation efficiency. Irrig. Sci. 16, 89–95 (1995).

    Article  Google Scholar 

  • 33.

    Berry, Z. C., Emery, N. C., Gotsch, S. G. & Goldsmith, G. R. Foliar water uptake: processes, pathways, and integration into plant water budgets. Plant Cell Environ. 42, 410–423 (2019).

    CAS  Article  Google Scholar 

  • 34.

    Munne-Bosch, S., Nogues, S. & Alegre, L. Diurnal variations of photosynthesis and dew absorption by leaves in two evergreen shrubs growing in Mediterranean field conditions. New Phytol. 144, 109–119 (1999).

    Article  Google Scholar 

  • 35.

    Martin, C. E. & Von Willert, D. J. Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species of Crassula from the Namib Desert in southern Africa. Plant Biol. 2, 229–242 (2000).

    Article  Google Scholar 

  • 36.

    Breshears, D. D. et al. Foliar absorption of intercepted rainfall improves woody plant water status most during drought. Ecology 89, 41–47 (2008).

    Article  Google Scholar 

  • 37.

    Ritter, F., Berkelhammer, M. & Beysens, D. Dew frequency across the US from a network of in situ radiometers. Hydrol. Earth Syst. Sci. 23, 1179–1197 (2019).

    Article  Google Scholar 

  • 38.

    Marschner, B. & Kalbitz, K. Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma 113, 211–235 (2003).

    CAS  Article  Google Scholar 

  • 39.

    Yuan, Z. Y. et al. Experimental and observational studies find contrasting responses of soil nutrients to climate change. Elife 6, 1–19 (2017).

    Google Scholar 

  • 40.

    Trujillo, E., Molotch, N. P., Goulden, M. L., Kelly, A. E. & Bales, R. C. Elevation-dependent influence of snow accumulation on forest greening. Nat. Geosci. 5, 705–709 (2012).

    CAS  Article  Google Scholar 

  • 41.

    Fatichi, S., Ivanov, V. Y. & Caporali, E. Investigating interannual variability of precipitation at the global scale: Is there a connection with seasonality? J. Clim. 25, 5512–5523 (2012).

    Article  Google Scholar 

  • 42.

    Knapp, A. K., Ciais, P. & Smith, M. D. Reconciling inconsistencies in precipitation–productivity relationships: implications for climate change. New Phytol. 214, 41–47 (2017).

    Article  Google Scholar 

  • 43.

    Moreno-Jiménez, E. et al. Aridity and reduced soil micronutrient availability in global drylands. Nat. Sustain. 2, 371–377 (2019).

    Article  Google Scholar 

  • 44.

    Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E. & Houston, T. G. An overview of the global historical climatology network-daily database. J. Atmos. Ocean. Technol. 29, 897–910 (2012).

    Article  Google Scholar 

  • 45.

    Fan, Y. & van den Dool, H. A global monthly land surface air temperature analysis for 1948-present. J. Geophys. Res. Atmos. 113, 1–18 (2008).

    Article  CAS  Google Scholar 

  • 46.

    Monti, A. & Venturi, G. A simple method to improve the estimation of the relationship between rainfall and crop yield. Agron. Sustain. Dev. 27, 255–260 (2007).

    Article  Google Scholar 

  • 47.

    Gu, L., Pallardy, S. G., Hosman, K. P. & Sun, Y. Impacts of precipitation variability on plant species and community water stress in a temperate deciduous forest in the central US. Agric. For. Meteorol. 217, 120–136 (2016).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Georgina Mace (1953–2020)

    Designing off-grid refrigeration technologies for crop storage in Kenya