in

Disturbance history can increase functional stability in the face of both repeated disturbances of the same type and novel disturbances

  • 1.

    Nazaries, L. et al. Evidence of microbial regulation of biogeochemical cycles from a study on methane flux and land use change. Appl. Environ. Microbiol. 79, 4031–4040. https://doi.org/10.1128/aem.00095-13 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 2.

    Offre, P., Spang, A. & Schleper, C. Archaea in biogeochemical cycles. Annu. Rev. Microbiol. 67(67), 437–457. https://doi.org/10.1146/annurev-micro-092412-155614 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 3.

    Rousk, J. & Bengtson, P. Microbial regulation of global biogeochemical cycles. Front. Microbiol. https://doi.org/10.3389/fmicb.2014.00103 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 4.

    IPCC. Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 1535 pp (Cambridge, United Kingdom and New York, NY, USA, 2013).

  • 5.

    Shade, A. et al. Fundamentals of microbial community resistance and resilience. Front. Microbiol. https://doi.org/10.3389/fmicb.2012.00417 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • 6.

    Allison, S. D. & Martiny, J. B. H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. USA 105, 11512–11519. https://doi.org/10.1073/pnas.0801925105 (2008).

    ADS  Article  PubMed  Google Scholar 

  • 7.

    Griffiths, B. S. & Philippot, L. Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol. Rev. 37, 112–129. https://doi.org/10.1111/j.1574-6976.2012.00343.x (2013).

    CAS  Article  PubMed  Google Scholar 

  • 8.

    Lindh, M. V. & Pinhassi, J. Sensitivity of bacterioplankton to environmental disturbance: a review of Baltic Sea field studies and experiments. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00361 (2018).

    Article  Google Scholar 

  • 9.

    Free, A., McDonald, M. A. & Pagaling, E. Diversity-function relationships in natural, applied, and engineered microbial ecosystems. Adv. Appl. Microbiol. 105(105), 131–189. https://doi.org/10.1016/bs.aambs.2018.07.002 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 10.

    Hillebrand, H. et al. Decomposing multiple dimensions of stability in global change experiments. Ecol. Lett. 21, 21–30. https://doi.org/10.1111/ele.12867 (2018).

    Article  PubMed  Google Scholar 

  • 11.

    Griffiths, B. S. et al. Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity-ecosystem function relationship. Oikos 90, 279–294. https://doi.org/10.1034/j.1600-0706.2000.900208.x (2000).

    Article  Google Scholar 

  • 12.

    Baho, D. L., Peter, H. & Tranvik, L. J. Resistance and resilience of microbial communities-temporal and spatial insurance against perturbations. Environ. Microbiol. 14, 2283–2292. https://doi.org/10.1111/j.1462-2920.2012.02754.x (2012).

    Article  PubMed  Google Scholar 

  • 13.

    Berga, M., Székely, A. J. & Langenheder, S. Effects of disturbance intensity and frequency on bacterial community composition and function. PLoS ONE 7, e36959 (2012).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Ager, D., Evans, S., Li, H., Lilley, A. K. & van der Gast, C. J. Anthropogenic disturbance affects the structure of bacterial communities. Environ. Microbiol. 12, 670–678. https://doi.org/10.1111/j.1462-2920.2009.02107.x (2010).

    Article  PubMed  Google Scholar 

  • 15.

    Sjöstedt, J. et al. Reduced diversity and changed bacterioplankton community composition do not affect utilization of dissolved organic matter in the Adriatic Sea. Aquat. Microb. Ecol. 71, 15–24 (2013).

    Article  Google Scholar 

  • 16.

    Vaquer-Sunyer, R. et al. Dissolved organic nitrogen inputs from wastewater treatment plant effluents increase responses of planktonic metabolic rates to warming. Environ. Sci. Technol. 49, 11411–11420. https://doi.org/10.1021/acs.est.5b00674 (2015).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 17.

    Bergen, B. et al. Acidification and warming affect prominent bacteria in two seasonal phytoplankton bloom mesocosms. Environ. Microbiol. 18, 4579–4595. https://doi.org/10.1111/1462-2920.13549 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 18.

    Salis, R. K., Bruder, A., Piggott, J. J., Summerfield, T. C. & Matthaei, C. D. High-throughput amplicon sequencing and stream benthic bacteria: identifying the best taxonomic level for multiplestressor research. Sci. Rep. 7, 12. https://doi.org/10.1038/srep44657 (2017).

    CAS  Article  Google Scholar 

  • 19.

    Sjöstedt, J., Langenheder, S., Kritzberg, E., Karlsson, C. M. G. & Lindstrom, E. S. Repeated disturbances affect functional but not compositional resistance and resilience in an aquatic bacterioplankton community. Environ. Microbiol. Rep. 10, 493–500. https://doi.org/10.1111/1758-2229.12656 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 20.

    Odum, E. P. in Stress effects on natural ecosystems (eds G. W. Barrett & R. Rosenberg) 43–47 (Wiley, London 1981).

  • 21.

    Herren, C. M., Webert, K. C. & McMahon, K. D. Environmental disturbances decrease the variability of microbial populations within periphyton. mSystems 1, 14. https://doi.org/10.1128/mSystems.00013-16 (2016).

    Article  Google Scholar 

  • 22.

    Tobor-Kaplon, M. A., Bloem, J. & de Ruiter, P. C. Functional stability of microbial communites from long-term stressed soils to additional disturbances. Environ. Toxicol. Chem. 25, 1993–1999 (2006).

    CAS  Article  Google Scholar 

  • 23.

    Tolkkinen, M. et al. Multi-stressor impacts on fungal diversity and ecosystem functions in streams: natural vs. anthropogenic stress. Ecology 96, 672–683. https://doi.org/10.1890/14-0743.1 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 24.

    Müller, A. K., Westergaard, K., Christensen, S. & Sørensen, S. J. The diversity and function of soil microbial communities exposed to different disturbances. Microb. Ecol. 44, 49–58 (2002).

    Article  Google Scholar 

  • 25.

    Leyer, G. J. & Johnson, E. A. Acid adaptation induces cross-protection against environmental stresses in salmonella-typhimurium. Appl. Environ. Microbiol. 59, 1842–1847. https://doi.org/10.1128/aem.59.6.1842-1847.1993 (1993).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 26.

    Rillig, M. C., Rolff, J., Tietjen, B., Wehner, J. & Andrade-Linares, D. R. Community priming-effects of sequential stressors on microbial assemblages. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiv040 (2015).

    Article  PubMed  Google Scholar 

  • 27.

    Andrade-Linares, D. R., Lehmann, A. & Rillig, M. C. Microbial stress priming—a meta-analysis. Environ. Microbiol. https://doi.org/10.1111/1462-2920.13223 (2016).

    Article  PubMed  Google Scholar 

  • 28.

    Cebrian, G., Sagarzazu, N., Pagan, R., Condon, S. & Manas, P. Development of stress resistance in Staphylococcus aureus after exposure to sublethal environmental conditions. Int. J. Food Microbiol. 140, 26–33. https://doi.org/10.1016/j.ijfoodmicro.2010.02.017 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 29.

    Vinebrooke, R. D. et al. Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos 104, 451–457 (2004).

    Article  Google Scholar 

  • 30.

    Mills, A. L. & Mallory, L. M. The community structure of sessile heterotrophic bacteria stressed by acid mine drainage. Microb. Ecol. 14, 219–232 (1987).

    CAS  Article  Google Scholar 

  • 31.

    Atlas, R. M., Horowitz, A., Krichevsky, M. & Bej, A. K. Response of microbial populations to environmental disturbance. Microb. Ecol. 22, 249–256 (1991).

    CAS  Article  Google Scholar 

  • 32.

    Berga, M., Zha, Y. H., Szekely, A. J. & Langenheder, S. Functional and compositional stability of bacterial metacommunities in response to salinity changes. Front. Microbiol. 8, 11. https://doi.org/10.3389/fmicb.2017.00948 (2017).

    Article  Google Scholar 

  • 33.

    Allison, G. The influence of species diversity and stress intensity on community resistance and resilience. Ecol. Monogr. 74, 117–134. https://doi.org/10.1890/02-0681 (2004).

    Article  Google Scholar 

  • 34.

    Downing, A. L. & Leibold, M. A. Species richness facilitates ecosystem resilience in aquatic food webs. Freshwat. Biol. 55, 2123–2137. https://doi.org/10.1111/j.1365-2427.2010.02472.x (2010).

    Article  Google Scholar 

  • 35.

    Kim, M., Heo, E., Kang, H. & Adams, J. Changes in soil bacterial community structure with increasing disturbance frequency. Microb. Ecol. 66, 171–181. https://doi.org/10.1007/s00248-013-0237-9 (2013).

    Article  PubMed  Google Scholar 

  • 36.

    Gibbons, S. M. et al. Disturbance regimes predictably alter diversity in an ecologically complex bacterial system. mBio https://doi.org/10.1128/mBio.01372-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 37.

    Devictor, V., Julliard, R. & Jiguet, F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117, 507–514. https://doi.org/10.1111/j.2008.0030-1299.16215.x (2008).

    Article  Google Scholar 

  • 38.

    Futuyma, D. J. & Moreno, G. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19, 207–233. https://doi.org/10.1146/annurev.es.19.110188.001231 (1988).

    Article  Google Scholar 

  • 39.

    Pandit, S. N., Kolasa, J. & Cottenie, K. Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology 90, 2253–2262. https://doi.org/10.1890/08-0851.1 (2009).

    Article  PubMed  Google Scholar 

  • 40.

    Blanck, H. A critical review of procedures and approaches used for assessing pollution-induced community tolerance (PICT) in biotic communities. Hum. Ecol. Risk Assess. 8, 1003–1034. https://doi.org/10.1080/1080-700291905792 (2002).

    Article  Google Scholar 

  • 41.

    Li, J. et al. Initial copper stress strengthens the resistance of soil microorganisms to a subsequent copper stress. Microb. Ecol. 67, 931–941. https://doi.org/10.1007/s00248-014-0391-8 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 42.

    Girvan, M. S., Campbell, C. D., Killham, K., Prosser, J. I. & Glover, L. A. Bacterial diversity promotes community stability and functional resilience after perturbation. Environ. Microbiol. 7, 301–313 (2005).

    CAS  Article  Google Scholar 

  • 43.

    Azarbad, H. et al. Resilience of soil microbial communities to metals and additional stressors: DNA-based approaches for assessing “stress-on-stress” responses. Int. J. Mol. Sci. 17, 1–21 (2016).

    Article  Google Scholar 

  • 44.

    Calow, P. Physiological costs of combating chemical toxicants: ecological implications. Comp. Biochem. Physiol. Part C Comp. Pharmacol. 100, 3–6 (1991).

    CAS  Article  Google Scholar 

  • 45.

    Kuperman, R. G. & Carreiro, M. M. Soil heavy metal concentrations, microbial biomass and enzyme activities in contaminated grassland ecosytem. Soil Biol. Biochem. 29, 179–190 (1997).

    CAS  Article  Google Scholar 

  • 46.

    Mulder, C. P. H., Uliassi, D. D. & Doak, D. F. Physical stress and diversity-productivity relationships: the role of positive interactions. Proc. Natl. Acad. Sci. USA 98, 6704–6708. https://doi.org/10.1073/pnas.111055298 (2001).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 47.

    Grman, E., Lau, J. A., Schoolmaster, D. R. & Gross, K. L. Mechanisms contributing to stability in ecosystem function depend on the environmental context. Ecol. Lett. 13, 1400–1410. https://doi.org/10.1111/j.1461-0248.2010.01533.x (2010).

    Article  PubMed  Google Scholar 

  • 48.

    Philippot, L. et al. Effect of primary mild stress on resilience and resistance of the nitrate reducer community to a subsequent severe stress. FEMS Microbiol. Lett. 285, 51–57 (2008).

    CAS  Article  Google Scholar 

  • 49.

    Kassen, B. & Bell, G. Experimental evolution in Chlamydomonas. IV. Selection in environments that vary through time at different scales. Heredity 80, 732–741 (1998).

    Article  Google Scholar 

  • 50.

    Venail, P. A., Kaltz, O., Olivieri, I., Pommier, T. & Mouquet, N. Diversification in temporally heterogeneous environments: effect of the grain in experimental bacterial populations. J. Evol. Biol. 24, 2485–2495. https://doi.org/10.1111/j.1420-9101.2011.02376.x (2011).

    CAS  Article  PubMed  Google Scholar 

  • 51.

    Nezhad, M. H., Hussain, M. A. & Britz, M. L. Stress responses in probiotic Lactobacillus casei. Crit. Rev. Food Sci. Nutr. 55, 740–749. https://doi.org/10.1080/10408398.2012.675601 (2015).

    CAS  Article  Google Scholar 

  • 52.

    Zhai, Z. Y. et al. Proteomic characterization of the acid tolerance response in Lactobacillus delbrueckii subsp bulgaricusCAUH1 and functional identification of a novel acid stress-related transcriptional regulator Ldb0677. Environ. Microbiol. 16, 1524–1537. https://doi.org/10.1111/1462-2920.12280 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 53.

    Morita, R. Y. Psychrophilic bacteria. Bacteriol. Rev. 39, 144–167 (1975).

    CAS  Article  Google Scholar 

  • 54.

    Persson, I., Pirard, J., Larsson, A., Holm, C. & Lousa-Alvin, A. Kväveafskiljningens effekt på Ekoln. Report No. 2012-12, 72 (Svenskt Vatten Utveckling, 2012).

  • 55.

    Baath, E. & Kritzberg, E. pH tolerance in freshwater bacterioplankton: trait variation of the community as measured by leucine incorporation. Appl. Environ. Microbiol. 81, 7411–7419. https://doi.org/10.1128/aem.02236-15 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 56.

    Sinclair, L., Osman, O. A., Bertilsson, S. & Eiler, A. Microbial community composition and diversity via 16S rRNA gene amplicons: evaluating the illumina platform. PLoS ONE https://doi.org/10.1371/journal.pone.0116955 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 57.

    Edgar, R. C. UPARSE highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996+ (2013).

    CAS  Article  Google Scholar 

  • 58.

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS  Article  Google Scholar 

  • 59.

    Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137. https://doi.org/10.3354/ame01753 (2015).

    Article  Google Scholar 

  • 60.

    Oksanen, J. et al. vegan: Community Ecology Package. https://CRAN.R-project.org/package=vegan (2015).

  • 61.

    del Giorgio, P., Bird, D. F., Prairie, Y. T. & Planas, D. Flow cytometric determination of bacterial abundance in lake plankton with the green nucleic acid stain SYTO 13. Limnol. Oceanogr. 41, 783–789 (1996).

    ADS  Article  Google Scholar 

  • 62.

    Smith, D. C. & Azam, F. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-Leucine. Mar. Microbial. Food Webs 6, 107–114 (1992).

    Google Scholar 

  • 63.

    Kirchman, D. L. in Handbook of methods in aquatic microbial ecology (eds P. F. Kemp, E. B. Sherr, B. F. Sherr, & J. J. Cole) (Lewis Publishers, London, 1993).

  • 64.

    Ylla, I., Peter, H., Romani, A. M. & Tranvik, L. J. Different diversity-functioning relationship in lake and stream bacterial communities. FEMS Microbiol. Ecol. 85, 95–103. https://doi.org/10.1111/1574-6941.12101 (2013).

    Article  PubMed  Google Scholar 

  • 65.

    Maxwell, S. E., Delaney, H. D. & Kelly, K. Designing Experiments and Analyzing Data: A Model Comparison Perspective (3, Routledge, London, 2018).

    Google Scholar 


  • Source: Ecology - nature.com

    Quantitative comparison between the rhizosphere effect of Arabidopsis thaliana and co-occurring plant species with a longer life history

    A new approach to carbon capture