in

Divergent forest sensitivity to repeated extreme droughts

  • 1.

    Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).

    CAS  Article  Google Scholar 

  • 2.

    Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).

    CAS  Article  Google Scholar 

  • 3.

    IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) (Cambridge Univ. Press, 2012).

  • 4.

    Schwalm, C. R. et al. Reduction in carbon uptake during turn of the century drought in western North America. Nat. Geosci. 5, 551–556 (2012).

    CAS  Article  Google Scholar 

  • 5.

    Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).

    CAS  Article  Google Scholar 

  • 6.

    Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 129 (2015).

    Article  Google Scholar 

  • 7.

    Dai, A. Drought under global warming: a review. Wiley Interdiscip. Rev. Clim. Change 2, 45–65 (2011).

    Article  Google Scholar 

  • 8.

    Cook, B. I., Smerdon, J. E., Seager, R. & Coats, S. Global warming and 21st century drying. Clim. Dyn. 43, 2607–2627 (2014).

    Article  Google Scholar 

  • 9.

    Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000).

    CAS  Article  Google Scholar 

  • 10.

    Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).

    Article  Google Scholar 

  • 11.

    Zscheischler, J. et al. A few extreme events dominate global interannual variability in gross primary production. Environ. Res. Lett. 9, 035001 (2014).

    Article  Google Scholar 

  • 12.

    Miao, S., Zou, C. B. & Breshears, D. D. Vegetation responses to extreme hydrological events: sequence matters. Am. Nat. 173, 113–118 (2008).

    Article  Google Scholar 

  • 13.

    Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).

    CAS  Article  Google Scholar 

  • 14.

    Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202–205 (2017).

    CAS  Article  Google Scholar 

  • 15.

    Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).

    Article  Google Scholar 

  • 16.

    Gunderson, L. H. et al. Ecological resilience—in theory and application. Annu. Rev. Ecol. Syst. 31, 425–439 (2000).

    Article  Google Scholar 

  • 17.

    Ingrisch, J. & Bahn, M. Towards a comparable quantification of resilience. Trends Ecol. Evol. 33, 251–259 (2018).

    Article  Google Scholar 

  • 18.

    Bartlett, M. K. et al. Global analysis of plasticity in turgor loss point, a key drought tolerance trait. Ecol. Lett. 17, 1580–1590 (2014).

    Article  Google Scholar 

  • 19.

    Martínez‐Vilalta, J. et al. Hydraulic adjustment of Scots pine across Europe. New Phytol. 184, 353–364 (2009).

    Article  Google Scholar 

  • 20.

    Hacke, U. G., Stiller, V., Sperry, J. S., Pittermann, J. & McCulloh, K. A. Cavitation fatigue. Embolism and refilling cycles can weaken the cavitation resistance of xylem. Plant Physiol. 125, 779–786 (2001).

    CAS  Article  Google Scholar 

  • 21.

    Sala, A., Woodruff, D. R. & Meinzer, F. C. Carbon dynamics in trees: feast or famine? Tree Physiol. 32, 764–775 (2012).

    CAS  Article  Google Scholar 

  • 22.

    Schymanski, S. J., Roderick, M. L., Sivapalan, M., Hutley, L. B. & Beringer, J. A canopy-scale test of the optimal water-use hypothesis. Plant Cell Environ. 31, 97–111 (2008).

    Google Scholar 

  • 23.

    Zhang, T., Niinemets, Ü., Sheffield, J. & Lichstein, J. W. Shifts in tree functional composition amplify the response of forest biomass to climate. Nature 556, 99–102 (2018).

    CAS  Article  Google Scholar 

  • 24.

    Anderegg, W. R. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538–541 (2018).

    CAS  Article  Google Scholar 

  • 25.

    Royer, P. D. et al. Extreme climatic event-triggered overstorey vegetation loss increases understorey solar input regionally: primary and secondary ecological implications. J. Ecol. 99, 714–723 (2011).

    Article  Google Scholar 

  • 26.

    Raffa, K. F. et al. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. BioScience 58, 501–517 (2008).

    Article  Google Scholar 

  • 27.

    Anderegg, W. R., Trugman, A. T., Bowling, D. R., Salvucci, G. & Tuttle, S. E. Plant functional traits and climate influence drought intensification and land–atmosphere feedbacks. Proc. Natl Acad. Sci. USA 116, 14071–14076 (2019).

  • 28.

    Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Change Biol. 23, 1675–1690 (2017).

    Article  Google Scholar 

  • 29.

    Camarero, J. J., Gazol, A., Sangüesa-Barreda, G., Oliva, J. & Vicente-Serrano, S. M. To die or not to die: early warnings of tree dieback in response to a severe drought. J. Ecol. 103, 44–57 (2015).

    CAS  Article  Google Scholar 

  • 30.

    Jump, A. S. et al. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Glob. Change Biol. 23, 3742–3757 (2017).

    Article  Google Scholar 

  • 31.

    Saatchi, S. et al. Persistent effects of a severe drought on Amazonian forest canopy. Proc. Natl Acad. Sci. USA 110, 565–570 (2013).

    CAS  Article  Google Scholar 

  • 32.

    Konings, A. G., Williams, A. P. & Gentine, P. Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation. Nat. Geosci. 10, 284–288 (2017).

    CAS  Article  Google Scholar 

  • 33.

    Carnicer, J. et al. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc. Natl Acad. Sci. USA 108, 1474–1478 (2011).

    CAS  Article  Google Scholar 

  • 34.

    Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).

    CAS  Article  Google Scholar 

  • 35.

    Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

    CAS  Article  Google Scholar 

  • 36.

    Duffy, P. B., Brando, P., Asner, G. P. & Field, C. B. Projections of future meteorological drought and wet periods in the Amazon. Proc. Natl Acad. Sci. USA 112, 13172–13177 (2015).

    CAS  Article  Google Scholar 

  • 37.

    Johnson, D. M., McCulloh, K. A., Woodruff, D. R. & Meinzer, F. C. Hydraulic safety margins and embolism reversal in stems and leaves: why are conifers and angiosperms so different? Plant Sci. 196, 48–53 (2012).

    Article  CAS  Google Scholar 

  • 38.

    Morris, H. et al. A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. New Phytol. 209, 1553–1565 (2016).

    CAS  Article  Google Scholar 

  • 39.

    DeSoto, L. et al. Low growth resilience to drought is related to future mortality risk in trees. Nat. Commun. 11, 1–9 (2020).

    Article  CAS  Google Scholar 

  • 40.

    Fisher, R. A. et al. Vegetation demographics in Earth system models: a review of progress and priorities. Glob. Change Biol. 24, 35–54 (2018).

    Article  Google Scholar 

  • 41.

    Kennedy, D. et al. Implementing plant hydraulics in the Community Land Model, version 5. J. Adv. Model. Earth Syst. 11, 485–513 (2019).

    Article  Google Scholar 

  • 42.

    Trugman, A. T. et al. Tree carbon allocation explains forest drought-kill and recovery patterns. Ecol. Lett. 21, 1552–1560 (2018).

    CAS  Article  Google Scholar 

  • 43.

    Trugman, A. T. et al. Climate and plant trait strategies determine tree carbon allocation to leaves and mediate future forest productivity. Glob. Change Biol. 25, 3395–3405 (2019).

    Article  Google Scholar 

  • 44.

    Scheiter, S., Langan, L. & Higgins, S. I. Next-generation dynamic global vegetation models: learning from community ecology. New Phytol. 198, 957–969 (2013).

    Article  Google Scholar 

  • 45.

    Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I., Angulo, M. & El Kenawy, A. A new global 0.5 gridded dataset (1901–2006) of a multiscalar drought index: comparison with current drought index datasets based on the Palmer Drought Severity Index. J. Hydrometeorol. 11, 1033–1043 (2010).

    Article  Google Scholar 

  • 46.

    Beguería, S., Vicente-Serrano, S. M. & Angulo-Martínez, M. A multiscalar global drought dataset: the SPEIbase: a new gridded product for the analysis of drought variability and impacts. Bull. Am. Meteorol. Soc. 91, 1351–1356 (2010).

    Article  Google Scholar 

  • 47.

    Beguería, S., Vicente-Serrano, S. M., Reig, F. & Latorre, B. Standardized Precipitation Evapotranspiration Index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023 (2014).

    Article  Google Scholar 

  • 48.

    Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl Acad. Sci. USA 110, 52–57 (2013).

    CAS  Article  Google Scholar 

  • 49.

    Gazol, A., Camarero, J. J., Anderegg, W. R. L. & Vicente-Serrano, S. M. Impacts of droughts on the growth resilience of Northern Hemisphere forests. Glob. Ecol. Biogeogr. 26, 166–176 (2017).

    Article  Google Scholar 

  • 50.

    Klesse, S. et al. Sampling bias overestimates climate change impacts on forest growth in the southwestern United States. Nat. Commun. 9, 5336 (2018).

    CAS  Article  Google Scholar 

  • 51.

    Bechtold, W. A. & Patterson, P. L. The Enhanced Forest Inventory and Analysis Program—National Sampling Design and Estimation Procedures General Technical Report SRS-80 (USDA, 2005).

  • 52.

    Bechtold, W. & Scott, C. T. in The Enhanced Forest Inventory and Analysis Program—National Sampling Design and Estimation Procedures General Technical Report SRS-80 (eds Bechtold, W. A. & Patterson, P. L.) 37–52 (USDA, 2005).

  • 53.

    Woudenberg, S. W. et al. The Forest Inventory and Analysis Database: Database Description and Users Manual Version 4.0 for Phase 2 General Technical Report RMRS-GTR-245 (USDA, 2010).

  • 54.

    Jacobi, W. R., Kearns, H. S. J. & Johnson, D. W. Persistence of pinyon pine snags and logs in southwestern Colorado. West. J. Appl. For. 20, 247–252 (2005).

    Article  Google Scholar 

  • 55.

    Shaw, J. D. et al. Arizona’s Forest Resources, 2001–2014 Resource Bulletin RMRS-RB-25 (USDA, 2018).

  • 56.

    Shaw, J. D., Steed, B. E. & DeBlander, L. T. Forest inventory and analysis (FIA) annual inventory answers the question: what is happening to pinyon-juniper woodlands? J. For. 103, 280–285 (2005).

    Google Scholar 

  • 57.

    Breshears, D. D. et al. Regional vegetation die-off in response to global-change-type drought. Proc. Natl Acad. Sci. USA 102, 15144–15148 (2005).

    CAS  Article  Google Scholar 

  • 58.

    Williams, A. P. et al. Forest responses to increasing aridity and warmth in the southwestern United States. Proc. Natl Acad. Sci. USA 107, 21289–21294 (2010).

    CAS  Article  Google Scholar 

  • 59.

    Anderegg, W. R. et al. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol. 208, 674–683 (2015).

    Article  Google Scholar 

  • 60.

    Jackson, T. J. & Schmugge, T. J. Vegetation effects on the microwave emission of soils. Remote Sens. Environ. 36, 203–212 (1991).

    Article  Google Scholar 

  • 61.

    Tian, F. et al. Remote sensing of vegetation dynamics in drylands: evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel. Remote Sens. Environ. 177, 265–276 (2016).

    Article  Google Scholar 

  • 62.

    Liu, Y. Y. et al. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Change 5, 470–474 (2015).

    Article  Google Scholar 

  • 63.

    Momen, M. et al. Interacting effects of leaf water potential and biomass on vegetation optical depth. J. Geophys. Res. Biogeosci. 122, 3031–3046 (2017).

    Article  Google Scholar 

  • 64.

    Konings, A. G. & Gentine, P. Global variations in ecosystem-scale isohydricity. Glob. Change Biol. 23, 891–905 (2017).

    Article  Google Scholar 

  • 65.

    Van de Griend, A. A. & Wigneron, J.-P. The b-factor as a function of frequency and canopy type at H-polarization. IEEE Trans. Geosci. Remote Sens. 42, 786–794 (2004).

    Article  Google Scholar 

  • 66.

    Konings, A. G., Rao, K. & Steele-Dunne, S. C. Macro to micro: microwave remote sensing of plant water content for physiology and ecology. New Phytol. https://doi.org/10.1111/nph.15808 (2019).

  • 67.

    Du, J. et al. A global satellite environmental data record derived from AMSR-E and AMSR2 microwave earth observations. Earth Syst. Sci. Data Discuss. https://doi.org/10.5194/essd-2017-27 (2017).

  • 68.

    Du, J., Kimball, J. S., Jones, L. A. & Member, S. Passive microwave remote sensing of soil moisture based on dynamic vegetation scattering properties for AMSR-E. IEEE Trans. Geosci. Remote Sens. 54, 597–608 (2015).

    Article  Google Scholar 

  • 69.

    Du, J. et al. A global satellite environmental data record derived from AMSR-E and AMSR2 microwave Earth observations. Earth Syst. Sci. Data 9, 791–808 (2017).

    Article  Google Scholar 

  • 70.

    Jones, L. A. et al. Satellite microwave remote sensing of daily land surface air temperature minima and maxima from AMSR-E. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 3, 111–123 (2010).

    Article  Google Scholar 

  • 71.

    Olson, D. M. et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).

    Article  Google Scholar 

  • 72.

    Zar, J. H. in Biostatistical Analysis 1st edn, 185–205 (Prentice-Hall International, 1984).

  • 73.

    Fox, J. et al. Package ‘car’ (R Foundation for Staistical Computing, 2012).

  • 74.

    Fox, J., Friendly, M. & Weisberg, S. Hypothesis tests for multivariate linear models using the car package. R J. 5, 39–52 (2013).

    Article  Google Scholar 

  • 75.

    Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).

    Article  Google Scholar 

  • 76.

    Pinheiro, J. et al. nlme: linear and nonlinear mixed effects models. R package v.3.1-117 (R Foundation for Statistical Computing, 2014).

  • 77.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2012).


  • Source: Ecology - nature.com

    Genetic structure in Orkney island mice: isolation promotes morphological diversification

    Leaf versus whole-canopy remote sensing methodologies for crop monitoring under conservation agriculture: a case of study with maize in Zimbabwe