in

Diversity hotspot and unique community structure of foraminifera in the world’s deepest marine blue hole – Sansha Yongle Blue Hole

[adace-ad id="91168"]
  • 1.

    Mylroie, J. E., Carew, J. L. & Moore, A. I. Blue holes: Definition and genesis. Carb. Evapor. 10, 225–233, https://doi.org/10.1007/BF03175407 (1995).

    CAS  Article  Google Scholar 

  • 2.

    Canganella, F., Bianconi, G., Kato, C. & Gonzalez, J. Microbial ecology of submerged marine caves and holes characterized by high levels of hydrogen sulphide in Life in Extreme Environments (eds. Amils, R., Ellis-Evans, C. & Hinghofer-Szalkay, H.) 115-124 (Springer Dordrecht, https://doi.org/10.1007/978-1-4020-6285-8_7) (2006).

  • 3.

    Seymour, J. R., Humphreys, W. F. & Mitchell, J. G. Stratification of the microbial community inhabiting an anchialine sinkhole. Aquatic Microbial Ecology 50, 11–24, https://doi.org/10.3354/ame01153 (2007).

    Article  Google Scholar 

  • 4.

    Iliffe, T. M. & Kornicker, L. S. Worldwide diving discoveries of living fossil animals from the depths of anchialine and marine caves. Smithson Contrib. Mar. Sci. 38, 269–280 (2009).

    Google Scholar 

  • 5.

    Iliffe, T. M. Conservation of anchialine cave biodiversity in Hydrogeology and Biology of Post-Paleozoic Carbonate Aquifers (eds. Martin, J. B., Wicks, C. M. & Sasowsky, I. D.) 99-102 (Charles Town, Karst Waters Institute) (2002).

  • 6.

    Li, T. G. et al. Three-dimensional (3D) morphology of Sansha Yongle Blue Hole in the South China Sea revealed by underwater remotely operated vehicle. Scientific Reports 8, 17122, https://doi.org/10.1038/s41598-018-35220-x (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 7.

    Goldstein, S. T. Foraminifera: A biological overview in Modern Foraminifera (ed. Sen Gupta, B. K.) 37-55 (Springer Dordrecht, https://doi.org/10.1007/0-306-48104-9_3) (1999).

  • 8.

    Pawlowski, J. et al. Molecular evidence that Reticulomyxa filosa is a freshwater naked foraminifer. Journal of Eukaryotic Microbiology 46(6), 612–617, https://doi.org/10.1111/j.1550-7408.1999.tb05137.x (1999).

    CAS  Article  PubMed  Google Scholar 

  • 9.

    Holzmann, M., Habura, A., Giles, H., Bowser, S. S. & Pawlowski, J. Freshwater foraminiferans revealed by analysis of environmental DNA samples. J. Eukaryot. Microbiol 50(2), 135–139, https://doi.org/10.1111/j.1550-7408.2003.tb00248.x (2003).

    Article  PubMed  Google Scholar 

  • 10.

    Bernhard, J. M. & Sen Gupta, B. K. Foraminifera of oxygen-depleted environments in Modern Foraminifera (ed. Sen Gupta, B. K.) 201-216 (Dordrecht: Kluwer Academic Press) (1999).

  • 11.

    Gooday, A. J., Bernhard, J. M., Levin, L. A. & Suhr, S. B. Foraminifera in the Arabian Sea oxygen minimum zone and other oxygen deficient settings: taxonomic composition, diversity, and relation to metazoan faunas. Deep-Sea Research II 47(1-2), 25–54, https://doi.org/10.1016/S0967-0645(99)00099-5 (2000).

    ADS  Article  Google Scholar 

  • 12.

    Glock, N. et al. The role of benthic foraminifera in the benthic nitrogen cycle of the Peruvian oxygen minimum zone. Biogeosciences 10, 4767–4783, https://doi.org/10.5194/bg-10-4767-2013 (2013).

    ADS  Article  Google Scholar 

  • 13.

    Risgaard-Petersen, N. et al. Evidence for complete denitrification in a benthic foraminifer. Nature. 443, 93–96, https://doi.org/10.1038/nature05070 (2006).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 14.

    Glock, N. et al. Metabolic preference of nitrate over oxygen as an electron acceptor in foraminifera from the Peruvian oxygen minimum zone. Proc. Natl. Acad. Sci. 116, 2860–2865, https://doi.org/10.1073/pnas.1813887116 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 15.

    Høgslund, S., Revsbech, N. P., Cedhagen, T., Nielsen, L. P. & Gallardo, V. A. Denitrification, nitrate turnover, and aerobic respiration by benthic foraminiferans in the oxygen minimum zone off Chile. Journal of Experimental Marine Biology and Ecology. 359(2), 85–91, https://doi.org/10.1016/j.jembe.2008.02.015 (2008).

    CAS  Article  Google Scholar 

  • 16.

    Piña-Ochoa, E. et al. Widespread occurrence of nitrate storage and denitrification among Foraminifera and Gromiida. Proc. Natl. Acad. Sci. 107(3), 1148–1153, https://doi.org/10.1073/pnas.0908440107 (2010).

    ADS  Article  PubMed  Google Scholar 

  • 17.

    Bernhard, J. M. et al. Potential importance of physiologically diverse benthic foraminifera in sedimentary nitrate storage and respiration. Journal of Geophysical Research 117, 1851–1853, https://doi.org/10.1029/2012JG001949 (2012).

    CAS  Article  Google Scholar 

  • 18.

    Bouchet, V. M. P., Alve, E., Rygg, B. & Telford, R. J. Benthic foraminifera provide a promising tool for ecological quality assessment of marine waters. Ecological Indicators 23, 66–75, https://doi.org/10.1016/j.ecolind.2012.03.011 (2012).

    CAS  Article  Google Scholar 

  • 19.

    Pawlowski, J., Esling, P., Lejzerowicz, F., Cedhagen, T. & Wilding, T. A. Environmental monitoring through protist next-generation sequencing metabarcoding: assessing the impact of fish farming on benthic foraminifera communities. Molecular ecology resources 14(6), 1129–1140, https://doi.org/10.1111/1755-0998.12261 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 20.

    Lei, Y. L. et al. Responses of benthic foraminifera to the 2011 oil spill in the Bohai Sea, PR China. Marine Pollution Bulletin 96(1), 245–260, https://doi.org/10.1016/j.marpolbul.2015.05.020 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 21.

    Pawlowski, J. et al. Benthic monitoring of salmon farms in Norway using foraminiferal metabarcoding. Aquaculture Environment Interactions 8, 371–386, https://doi.org/10.3354/aei00182 (2016).

    Article  Google Scholar 

  • 22.

    Dijkstra, N. et al. Benthic foraminifera as bio-indicators of chemical and physical stressors in Hammerfest harbor (Northern Norway). Marine Pollution Bulletin 114, 384–396, https://doi.org/10.1016/j.marpolbul.2016.09.053 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 23.

    Jian, Z. M. et al. Benthic foraminiferal paleoceanography of the South China Sea over the last 40,000 years. Marine Geology 156, 159–186, https://doi.org/10.1016/S0025-3227(98)00177-7 (1999).

    ADS  CAS  Article  Google Scholar 

  • 24.

    Kim, J.-M. & Kucera, M. Benthic foraminifer record of environmental changes in the Yellow Sea (Hwanghae) during the last 15,000 years. Quaternary Science Reviews 19, 1067–1085, https://doi.org/10.1016/S0277-3791(99)00086-4 (2000).

    ADS  Article  Google Scholar 

  • 25.

    Billups, K. & Schrag, D. P. Paleotemperatures and ice volume of the past 27 Myr revisited with paired Mg/Ca and 18O/16O measurements on benthic foraminifera. Paleoceanography 17(1), 1003, https://doi.org/10.1029/2000PA000567 (2002).

    ADS  Article  Google Scholar 

  • 26.

    Lecroq, B. et al. Ultra-deep sequencing of foraminiferal microbarcodes unveils hidden richness of early monothalamous lineages in deep-sea sediments. Proc. Natl. Acad. Sci 108, 13177–13182, https://doi.org/10.1073/pnas.1018426108 (2011).

    ADS  Article  PubMed  Google Scholar 

  • 27.

    Lejzerowicz, F. et al. Ancient DNA complements microfossil record in deep-sea subsurface sediments. Biology Letters 9, 20130283, https://doi.org/10.1098/rsbl.2013.0283 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 28.

    Lejzerowicz, F., Esling, P. & Pawlowski, J. Patchiness of deep-sea benthic Foraminifera across the Southern Ocean: insights from high-throughput DNA sequencing. Deep Sea Research Part II 108, 17–26, https://doi.org/10.1016/j.dsr2.2014.07.018 (2014).

    CAS  Article  Google Scholar 

  • 29.

    Cordier, T., Barrenechea, I., Lejzerowicz, F., Reo, E. & Pawlowski, J. Benthic foraminiferal DNA metabarcodes significantly vary along a gradient from abyssal to hadal depths and between each side of the Kuril-Kamchatka trench. Progress in Oceanography 178, 102175, https://doi.org/10.1016/j.pocean.2019.102175 (2019).

    Article  Google Scholar 

  • 30.

    Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res 41(Database issue), D597-D604; https://doi.org/10.1093/nar/gks1160 (2013).

  • 31.

    Xie, L. P. et al. Hydrochemical properties and chemocline of the Sansha Yongle Blue Hole in the South China Sea. Science of the Total Environment 649, 1281–1292, https://doi.org/10.1016/j.scitotenv.2018.08.333 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 32.

    Hoeksema, B. W. Delineation of the Indo‐Malayan centre of maximum marine biodiversity: the coral triangle in Biogeography, Time, and Place: Distributions, Barriers, and Islands (ed. Renema, W.) 117-178 (Springer, Dordrecht) (2007).

  • 33.

    Förderer, M., Rödder, D. & Langer, M. R. Patterns of species richness and the center of diversity in modern Indo-Pacific larger foraminifera. Scientific Reports 8, 8189, https://doi.org/10.1038/s41598-018-26598-9 (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Schönfeld, J. et al. The FOBIMO (FOraminiferal BIo-MOnitoring) initiative—Towards a standardisedprotocol for soft-bottom benthic foraminiferal monitoring studies. Marine Micropaleontology 94-95, 1–13, https://doi.org/10.1016/j.marmicro.2012.06.001 (2012).

    ADS  Article  Google Scholar 

  • 35.

    Weber, A. A.-T. & Pawlowski, J. Wide occurrence of SSU rDNA intragenomic polymorphism in Foraminifera and its implications for molecular species identification. Protist 165, 645–661, https://doi.org/10.1016/j.protis.2014.07.006 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 36.

    Pawlowski, J., Lejzerowicz, F. & Esling, A. P. Next-generation environmental diversity surveys of foraminifera: preparing the future. The Biological Bulletin 227(2), 93–106 (2014).

    CAS  Article  Google Scholar 

  • 37.

    Gooday, A. J. Soft-shelled foraminifera in meiofaunal samples from the bathyal northeast Atlantic. Sarsia 71, 275–287, https://doi.org/10.1080/00364827.1986.10419697 (1986).

    Article  Google Scholar 

  • 38.

    Gooday, A. J. Epifaunal and shallow infaunal foraminiferal communities at three abyssal NE Atlantic sites subject to differing phytodetritus input regimes. Deep-Sea Research I 43(9), 1395–1421, https://doi.org/10.1016/S0967-0637(96)00072-6 (1996).

    Article  Google Scholar 

  • 39.

    Gooday, A. J., Bett, B. J., Shires, R. & Lambshead, P. J. D. Deep-sea benthic foraminiferal diversity in the NE Atlantic and NW Arabian sea: a synthesis. Deep-Sea Research II 45(1-3), 165–201, https://doi.org/10.1016/S0967-0645(97)00041-6 (1998).

    ADS  Article  Google Scholar 

  • 40.

    Gooday, A. J., Kitazato, H., Hori, S. & Toyofuku, T. Monothalamous soft-shelled foraminifera at an abyssal site in the North Pacific: a preliminary report. Journal of Oceanography 57, 377–384, https://doi.org/10.1023/A:101244701 (2001).

    Article  Google Scholar 

  • 41.

    Goineau, A. & Gooday, A. J. Diversity and spatial patterns of foraminiferal assemblages in the eastern Clarion-Clipperton zone (abyssal eastern equatorial Pacific). Deep Sea Research I 149, 103036, https://doi.org/10.1016/j.dsr.2019.04.014 (2019).

    Article  Google Scholar 

  • 42.

    Brandt, A. et al. First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature 447, 307–311, https://doi.org/10.1038/nature05827 (2007).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 43.

    Li, B. et al. Vertical variation in Vibrio community composition in Sansha Yongle Blue Hole and its ability to degrade macromolecules. Mar Life. Sci Technol 1, 1–13, https://doi.org/10.1007/s42995-019-00003-4 (2019).

    Article  Google Scholar 

  • 44.

    Orsi, W. D. et al. Anaerobic metabolism of Foraminifera thriving below the seafloor. https://doi.org/10.1101/2020.03.26.009324 (2020).

  • 45.

    Bernhard, J. M., Edgcomb, V. P., Casciotti, K. L., McIlvin, M. R. & Beaudoin, D. J. Denitrification likely catalyzed by endobionts in an allogromiid foraminifer. The ISME Journal 6, 951–960, https://doi.org/10.1038/ismej.2011.171 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 46.

    Woehle, C. et al. A novel eukaryotic denitrification pathway in foraminifera. Current Biology 28, 2536–2543, https://doi.org/10.1016/j.cub.2018.06.027 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 47.

    Kamp, A., Høgslund, S., Risgaard-Petersen, N. & Stief, P. Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes. Front Microbiol 6, 1492, https://doi.org/10.3389/fmicb.2015.01492 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 48.

    Lei, Y. L. & Li, T. G. Atlas of Benthic Foraminifera from China Seas the Bohai Sea and the Yellow Sea. 1-399 (Springer-Verlag GmSYBH Germany and Science Press, Beijing) (2016).

  • 49.

    Lejzerowicz, F., Voltsky, I. & Pawlowski, J. Identifying active foraminifera in the Sea of Japan using metatranscriptomic approach. Deep Sea Research Part II 86-87, 214–220, https://doi.org/10.1016/j.dsr2.2012.08.008 (2013).

    ADS  CAS  Article  Google Scholar 

  • 50.

    Esling, P., Lejzerowicz, F. & Pawlowski, J. Accurate multiplexing and filtering for high-throughput amplicon-sequencing. Nucleic acids research 43(5), 2513–2524, https://doi.org/10.1093/nar/gkv107 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 51.

    Zhao, F. & Xu, K. D. Molecular diversity and distribution pattern of ciliates in sediments from deep-sea hydrothermal vents in the Okinawa Trough and adjacent sea areas. Deep Sea Research Part I 116, 22-23; https://doi.org/10.1016/j.dsr.2016.07.007.

  • 52.

    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21), 2957–2963 (2011).

    Article  Google Scholar 

  • 53.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7, 335–336, https://doi.org/10.1038/nmeth.f.303 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 54.

    Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10(1), 57–59, https://doi.org/10.1038/nmeth.2276 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 55.

    Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. https://doi.org/10.1101/081257 (2016).

  • 56.

    Holzmann, M. & Pawlowski, J. An updated classification of rotaliid foraminifera based on ribosomal DNA phylogeny. Marine Micropaleontology 132, 18–34, https://doi.org/10.1016/j.marmicro.2017.04.002 (2017).

    ADS  Article  Google Scholar 

  • 57.

    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution 7, 1451–1456, https://doi.org/10.1111/2041-210X.12613 (2016).

    Article  Google Scholar 

  • 58.

    Wickham, H. Ggplot2: elegant graphics for data analysis. 1-260 (Springer Verlag) https://doi.org/10.1007/978-0-387-98141-3 (2016).

  • 59.

    Oksanen, J. et al. Vegan: community ecology package https://cran.r-project.org/web/packages/vegan/vegan.pdf (2019).

  • 60.

    Kolde, R. Pheatmap: pretty heatmaps https://cran.r-project.org/web/packages/pheatmap/pheatmap.pdf (2019).

  • 61.

    Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M. & Morris, M. Statnet: Software tools for the representation, visualization, analysis and simulation of network data. Journal of Statistical Software 24(1), 1–11 (2008).

    Article  Google Scholar 

  • 62.

    Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. Circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).

    CAS  Article  Google Scholar 

  • 63.

    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1), 1–9 (2001).

    Google Scholar 


  • Source: Ecology - nature.com

    Researchers find benefits of solar photovoltaics outweigh costs

    IdeaStream 2020 goes virtual