in

Do pit-building predators prefer or avoid barriers? Wormlions' preference for walls depends on light conditions

  • 1.

    Huey, R. B. & Pianka, E. R. Ecological consequences of foraging mode. Ecology 62, 991–999 (1981).

    Google Scholar 

  • 2.

    Cooper, W. E. The foraging mode controversy: both continuous variation and clustering of foraging movements occur. J. Zool. 267, 179–190 (2005).

    Google Scholar 

  • 3.

    Anderson, J. F. Responses to starvation in the spiders Lycosa lenta Hentz and Filistata hibernalis (Hentz). Ecology 55, 576–585 (1974).

    Google Scholar 

  • 4.

    Nagy, K. A., Huey, R. B. & Bennett, A. F. Field energetics and foraging mode of Kalahari lacertid lizards. Ecology 65, 588–596 (1984).

    Google Scholar 

  • 5.

    Higginson, A. D. & Ruxton, G. D. Foraging mode switching: the importance of prey distribution and foraging currency. Anim. Behav. 105, 121–137 (2015).

    Google Scholar 

  • 6.

    Werner, E. E. & Hall, D. J. Ontogenetic habitat shifts in bluegill: the foraging rate-predation risk trade-off. Ecology 69, 1352–1366 (1988).

    Google Scholar 

  • 7.

    Azevedo-Ramos, C., Van Sluys, M., Hero, J. M. & Magnusson, W. E. Influence of tadpole movement on predation by odonate naiads. J. Herpetol. 26, 335–338 (1992).

    Google Scholar 

  • 8.

    Gotthard, K. Increased risk of predation as a cost of high growth rate: an experimental test in a butterfly. J. Anim. Ecol. 69, 896–902 (2000).

    PubMed  PubMed Central  Google Scholar 

  • 9.

    Toft, C. A. Feeding ecology of Panamanian litter anurans: patterns in diet and foraging mode. J. Herpetol. 15, 139–144 (1981).

    Google Scholar 

  • 10.

    Clark, R. W. Feeding experience modifies the assessment of ambush sites by the timber rattlesnake, a sit-and-wait predator. Ethology 110, 471–483 (2004).

    Google Scholar 

  • 11.

    González-Bernal, E., Brown, G. P., Cabrera-Guzmán, E. & Shine, R. Foraging tactics of an ambush predator: the effects of substrate attributes on prey availability and predator feeding success. Behav. Ecol. Sociobiol. 65, 1367–1375 (2011).

    Google Scholar 

  • 12.

    Welch, K. D., Haynes, K. F. & Harwood, J. D. Microhabitat evaluation and utilization by a foraging predator. Anim. Behav. 85, 419–425 (2013).

    Google Scholar 

  • 13.

    Adams, M. R. Choosing hunting sites: web site preferences of the orb weaver spider, Neoscona crucifera, relative to light cues. J. Insect Behav. 13, 299–305 (2000).

    Google Scholar 

  • 14.

    Metcalfe, N. B., Valdimarsson, S. K. & Fraser, N. H. Habitat profitability and choice in a sit-and-wait predator: juvenile salmon prefer slower currents on darker nights. J. Anim. Ecol. 66, 866–875 (1997).

    Google Scholar 

  • 15.

    Shine, R. & Li-Xin, S. Arboreal ambush site selection by pit-vipers Gloydius shedaoensis. Anim. Behav. 63, 565–576 (2002).

    Google Scholar 

  • 16.

    Eskew, E. A., Willson, J. D. & Winne, C. T. Ambush site selection and ontogenetic shifts in foraging strategy in a semi-aquatic pit viper, the Eastern cottonmouth. J. Zool. 277, 179–186 (2009).

    Google Scholar 

  • 17.

    Barghusen, L. E., Claussen, D. L., Anderson, M. S. & Bailer, A. J. The effects of temperature on the web-building behaviour of the common house spider, Achaearanea tepidariorum. Funct. Ecol. 11, 4–10 (1997).

    Google Scholar 

  • 18.

    Shine, R., Sun, L. X., Kearney, M. & Fitzgerald, M. Thermal correlates of foraging-site selection by Chinese pit-vipers (Gloydius shedaoensis, Viperidae). J. Therm. Biol. 27, 405–412 (2002).

    Google Scholar 

  • 19.

    Tsairi, H. & Bouskila, A. Ambush site selection of a desert snake (Echis coloratus) at an oasis. Herpetologica 60, 13–23 (2004).

    Google Scholar 

  • 20.

    Katz, N., Pruitt, J. N. & Scharf, I. The complex effect of illumination, temperature, and thermal acclimation on habitat choice and foraging behavior of a pit-building wormlion. Behav. Ecol. Sociobiol. 71, 137 (2017).

    Google Scholar 

  • 21.

    Scharf, I., Lubin, Y. & Ovadia, O. Foraging decisions and behavioural flexibility in trap-building predators: a review. Biol. Rev. 86, 626–639 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 22.

    Blamires, S. J. Biomechanical costs and benefits of sit-and-wait foraging traps. Isr. J. Ecol. Evol. 66, 5–14 (2020).

    Google Scholar 

  • 23.

    Dor, R., Rosenstein, S. & Scharf, I. Foraging behaviour of a neglected pit-building predator: the wormlion. Anim. Behav. 93, 69–76 (2014).

    Google Scholar 

  • 24.

    Lucas, J. R. Metabolic rates and pit-construction costs of two antlion species. J. Anim. Ecol. 55, 295–309 (1985).

    Google Scholar 

  • 25.

    Tanaka, K. Energetic cost of web construction and its effect on web relocation in the web-building spider Agelena limbata. Oecologia 81, 459–464 (1989).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 26.

    Zschokke, S., Hénaut, Y., Benjamin, S. P. & García-Ballinas, J. A. Prey-capture strategies in sympatric web-building spiders. Can. J. Zool. 84, 964–973 (2006).

    Google Scholar 

  • 27.

    Wu, C. C., Blamires, S. J., Wu, C. L. & Tso, I. M. Wind induces variations in spider web geometry and sticky spiral droplet volume. J. Exp. Biol. 216, 3342–3349 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 28.

    Lubin, Y., Ellner, S. & Kotzman, M. Web relocation and habitat selection in desert widow spider. Ecology 74, 1915–1928 (1993).

    Google Scholar 

  • 29.

    Scharf, I. & Ovadia, O. Factors influencing site abandonment and site selection in a sit-and-wait predator: a review of pit-building antlion larvae. J. Insect Behav. 19, 197–218 (2006).

    Google Scholar 

  • 30.

    Matsura, T., Yamaga, Y. & Itoh, M. Substrate selection for pit making and oviposition in an antlion, Myrmeleon bore Tjeder, in terms of sand particle size. Entomol. Sci. 8, 347–353 (2005).

    Google Scholar 

  • 31.

    Adar, S. & Dor, R. Mother doesn’t always know best: Maternal wormlion choice of oviposition habitat does not match larval habitat choice. Behav. Proc. 147, 1–4 (2018).

    Google Scholar 

  • 32.

    Riechert, S. E. & Tracy, C. R. Thermal balance and prey availability: bases for a model relating web-site characteristics to spider reproductive success. Ecology 56, 265–284 (1975).

    Google Scholar 

  • 33.

    Rao, D. & Poyyamoli, G. Role of structural requirements in web-site selection in Cyrtophora cicatrosa Stoliczka (Araneae: Araneidae). Curr. Sci. 81, 678–680 (2001).

    Google Scholar 

  • 34.

    Herberstein, M. E. The effect of habitat structure on web height preference in three sympatric web-building spiders (Araneae, Linyphiidae). J. Arachnol. 25, 93–96 (1997).

    Google Scholar 

  • 35.

    Mcnett, B. J. & Rypstra, A. L. Habitat selection in a large orb-weaving spider: vegetational complexity determines site selection and distribution. Ecol. Entomol. 25, 423–432 (2000).

    Google Scholar 

  • 36.

    Ruch, J., Heinrich, L., Bilde, T. & Schneider, J. M. Site selection and foraging in the eresid spider Stegodyphus tentoriicola. J. Insect Behav. 25, 1–11 (2012).

    Google Scholar 

  • 37.

    Forster, L. M. & Forster, R. R. A derivative of the orb web and its evolutionary significance. N. Z. J. Zool. 12, 455–465 (1985).

    Google Scholar 

  • 38.

    Eberhard, W. G. Ontogenetic changes in the web of Epeirotypus sp. (Araneae, Theridiosomatidae). J. Arachnol. 14, 125–128 (1986).

    Google Scholar 

  • 39.

    Soley, F. G., Jackson, R. R. & Taylor, P. W. Biology of Stenolemus giraffa (Hemiptera: Reduviidae), a web invading, araneophagic assassin bug from Australia. N. Z. J. Zool. 38, 297–316 (2011).

    Google Scholar 

  • 40.

    Draney, M. L. et al. Microhabitat distribution of Drapetisca alteranda, a tree trunk specialist sheet web weaver (Araneae: Linyphiidae). J. Arachnol. 42, 195–198 (2014).

    Google Scholar 

  • 41.

    Wagner, J. D. & Wise, D. H. Influence of prey availability and conspecifics on patch quality for a cannibalistic forager: laboratory experiments with the wolf spider Schizocosa. Oecologia 109, 474–482 (1997).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 42.

    Samu, F., Jozsa, Z. & Csànyi, E. Spider web contamination of house facades: habitat selection of spiders on urban wall surfaces. In European Arachnology (eds Samu, F. & Szinetàr, C.) 351–356 (Plant Protection Institute and Berzsenyi College, Budapest, 2002).

    Google Scholar 

  • 43.

    Voss, S. C., Main, B. Y. & Dadour, I. R. Habitat preferences of the urban wall spider Oecobius navus (Araneae, Oecobiidae). Aust. J. Entomol. 46, 261–268 (2007).

    Google Scholar 

  • 44.

    Mammola, S., Isaia, M., Demonte, D., Triolo, P. & Nervo, M. Artificial lighting triggers the presence of urban spiders and their webs on historical buildings. Landsc. Urban Plan. 180, 187–194 (2018).

    Google Scholar 

  • 45.

    Samocha, Y. & Scharf, I. Comparison of wormlion behavior under man-made and natural shelters: urban wormlions more strongly prefer shaded, fine-sand microhabitats, construct larger pits and respond faster to prey. Curr. Zool. 66, 91–98 (2020).

    PubMed  PubMed Central  Google Scholar 

  • 46.

    Bar-Ziv, M. A. et al. Comparison of wormlions and their immediate habitat under man-made and natural shelters: suggesting factors making wormlions successful in cities. Zoology 130, 38–46 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 47.

    Shochat, E., Lerman, S. B., Katti, M. & Lewis, D. B. Linking optimal foraging behavior to bird community structure in an urban-desert landscape: field experiments with artificial food patches. Am. Nat. 164, 232–243 (2004).

    PubMed  PubMed Central  Google Scholar 

  • 48.

    Evans, K. L., Newson, S. E. & Gaston, K. J. Habitat influences on urban avian assemblages. Ibis 151, 19–39 (2009).

    Google Scholar 

  • 49.

    Lowry, H., Lill, A. & Wong, B. B. Behavioural responses of wildlife to urban environments. Biol. Rev. 88, 537–549 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 50.

    Heinrich, B. & Heinrich, M. J. The pit-trapping foraging strategy of the ant lion, Myrmeleon immaculatus DeGeer (Neuroptera: Myrmeleontidae). Behav. Ecol. Sociobiol. 14, 151–160 (1984).

    Google Scholar 

  • 51.

    Matsura, T. An experimental study on the foraging behavior of a pit-building antlion larva, Myrmeleon bore. Res. Popul. Ecol. 29, 17–26 (1987).

    Google Scholar 

  • 52.

    Gatti, M. G. & Farji-Brener, A. G. Low density of ant lion larva (Myrmeleon crudelis) in ant-acacia clearings: high predation risk or inadequate substrate?. Biotropica 34, 458–462 (2002).

    Google Scholar 

  • 53.

    Devetak, D. & Arnett, A. E. Preference of antlion and wormlion larvae (Neuroptera: Myrmeleontidae; Diptera: Vermileonidae) for substrates according to substrate particle sizes. Eur. J. Entomol. 112, 500–509 (2015).

    Google Scholar 

  • 54.

    Adar, S., Dor, R. & Scharf, I. Habitat choice and complex decision making in a trap-building predator. Behav. Ecol. 27, 1491–1498 (2016).

    Google Scholar 

  • 55.

    Scharf, I. et al. The contribution of shelter from rain to the success of pit-building predators in urban habitats. Anim. Behav. 142, 139–145 (2018).

    Google Scholar 

  • 56.

    Miler, K., Yahya, B. E. & Czarnoleski, M. Substrate moisture, particle size and temperature preferences of trap-building larvae of sympatric antlions and wormlions from the rainforest of Borneo. Ecol. Entomol. 44, 488–493 (2019).

    Google Scholar 

  • 57.

    Grafals-Soto, R. & Nordstrom, K. Sand fences in the coastal zone: intended and unintended effects. Environ. Manage. 44, 420–429 (2009).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 58.

    Farji-Brener, A. G., Carvajal, D., Gei, M. G., Olano, J. & Sanchez, J. D. Direct and indirect effects of soil structure on the density of an antlion larva in a tropical dry forest. Ecol. Entomol. 33, 183–188 (2008).

    Google Scholar 

  • 59.

    Wheeler, W. M. Demons of the dust (NY, Norton, New York, 1930).

    Google Scholar 

  • 60.

    Devetak, D. Wormlion Vermileo vermileo (L.) (Diptera: Vermileonidae) in Slovenia and Croatia. Ann. Ser. Hist. Nat. 18, 283–286 (2008).

    Google Scholar 

  • 61.

    Bar-Ziv, M. A., Bega, D., Subach, A. & Scharf, I. Wormlions prefer both fine and deep sand but only deep sand leads to better performance. Curr. Zool. 65, 393–400 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 62.

    Abràmoff, D. M., Paulo, J. M. & Sunanda, J. R. Image processing with imageJ. Biophotonics Int. 11, 36–41 (2004).

    Google Scholar 

  • 63.

    Dixon, P. M. The bootstrap and the jackknife: describing the precision of ecological indices. In Design and Analysis of Ecological Experiments (eds Scheiner, S. M. & Gurevitch, J.) 267–288 (Oxford University Press, Oxford, 2001).

    Google Scholar 

  • 64.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    MathSciNet  MATH  Google Scholar 

  • 65.

    Katz, N., Subach, A., Pruitt, J. N. & Scharf, I. Habitat preference of wormlions and their behavioural repeatability under illumination/shade conditions. Ecol. Entomol. 41, 716–726 (2016).

    Google Scholar 

  • 66.

    Kallai, J. et al. Cognitive and affective aspects of thigmotaxis strategy in humans. Behav. Neurosci. 121, 21–30 (2007).

    PubMed  PubMed Central  Google Scholar 

  • 67.

    Sharma, S., Coombs, S., Patton, P. & De Perera, T. B. The function of wall-following behaviors in the Mexican blind cavefish and a sighted relative, the Mexican tetra (Astyanax). J. Comp. Physiol. A 195, 225–240 (2009).

    Google Scholar 

  • 68.

    Creed, R. P. & Miller, J. R. Interpreting animal wall-following behavior. Experientia 46, 758–761 (1990).

    Google Scholar 

  • 69.

    Hänzi, S. & Straka, H. Wall following in Xenopus laevis is barrier-driven. J. Comp. Physiol. A 204, 183–195 (2018).

    Google Scholar 

  • 70.

    Blamires, S. J., Thompson, M. B. & Hochuli, D. F. Habitat selection and web plasticity by the orb spider Argiope keyserlingi (Argiopidae): do they compromise foraging success for predator avoidance?. Austral Ecol. 32, 551–563 (2007).

    Google Scholar 

  • 71.

    Dussutour, A., Deneubourg, J. L. & Fourcassié, V. Amplification of individual preferences in a social context: the case of wall-following in ants. Proc. R Soc. B 272, 705–714 (2005).

    PubMed  PubMed Central  Google Scholar 

  • 72.

    Hunt, E. R. et al. Ants show a leftward turning bias when exploring unknown nest sites. Biol. Lett. 10, 20140945 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 73.

    Miler, K., Yahya, B. E. & Czarnoleski, M. Different predation efficiencies of trap-building larvae of sympatric antlions and wormlions from the rainforest of Borneo. Ecol. Entomol. 43, 255–262 (2018).

    Google Scholar 

  • 74.

    Jingu, A. & Hayashi, F. Pitfall vs fence traps in feeding efficiency of antlion larvae. J. Ethol. 36, 265–275 (1981).

    Google Scholar 

  • 75.

    Visscher, P. K. Group decision making in nest-site selection among social insects. Annu. Rev. Entomol. 52, 255–275 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 76.

    Schmidt, J. O. Hierarchy of attractants for honey bee swarms. J. Insect Behav. 14, 469–477 (2001).

    Google Scholar 

  • 77.

    Enders, F. Effects of prey capture, web destruction and habitat physiognomy on web-site tenacity of Argiope spiders (Araneidae). J. Arachnol. 3, 75–82 (1975).

    Google Scholar 

  • 78.

    Chmiel, K., Herberstein, M. E. & Elgar, M. A. Web damage and feeding experience influence web site tenacity in the orb-web spider Argiope keyserlingi Karsch. Anim. Behav. 60, 821–826 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 79.

    Rosenberg, D. & McKelvey, K. Estimation of habitat selection for central-place foraging animals. J. Wildlife Manag. 63, 1028–1038 (1999).

    Google Scholar 

  • 80.

    Matthiopoulos, J. The use of space by animals as a function of accessibility and preference. Ecol. Model. 159, 239–268 (2003).

    Google Scholar 


  • Source: Ecology - nature.com

    D-Lab moves online, without compromising on impact

    Coronavirus disease 2019 (COVID-19) outbreak: some serious consequences with urban and rural water cycle