in

Ecological and social constraints combine to promote evolution of non-breeding strategies in clownfish

  • 1.

    Emlen, S. T. In Behavioural Ecology: An Evolutionary Approach (eds Krebs, J. R. & Davies, N. B.) 301–337 (Blackwell, Oxford, 1991).

  • 2.

    Hamilton, W. D. The evolution of social behavior. J. Theor. Biol. 7, 1–52 (1964).

    CAS  Article  Google Scholar 

  • 3.

    West-Eberhard, M. J. The evolution of social behavior by kin selection. Q. Rev. Biol. 50, 1–33 (1975).

    Google Scholar 

  • 4.

    Emlen, S. T. & Wrege, P. H. A test of alternate hypotheses for helping behavior in white-fronted bee-eaters of Kenya. Behav. Ecol. Sociobiol. 25, 303–319 (1989).

    Article  Google Scholar 

  • 5.

    Reeve, H. K., Westneat, D. F., Noon, W. A., Sherman, P. W. & Aquadro, C. F. DNA fingerprinting’ reveals high levels of inbreeding in colonies of the eusocial naked mole- rat. Proc. Natn. Acad. Sci. 87, 2496–2500 (1990).

    CAS  Article  Google Scholar 

  • 6.

    Brouwere, L., Heg, D. & Taborsky, M. Experimental evidence for helper effects in a cooperatively breeding fish. Behav. Ecol. 16, 667–673 (2005).

    Article  Google Scholar 

  • 7.

    Wiley, R. H. & Rabenold, K. N. The evolution of cooperative breeding by delayed reciprocity and queuing for favorable social positions. Evolution 38, 97–107 (1984).

    Article  Google Scholar 

  • 8.

    Kokko, H. & Johnstone, R. A. Social queuing in animal societies: a dynamic model of reproductive skew. Proc. R. Soc. Lond. B 266, 571–578 (1999).

    Article  Google Scholar 

  • 9.

    Woolfenden, G. E. & Fitzpatrick, J. V. The inheritance of territory in group-breeding birds. Bioscience 28, 104–108 (1978).

    Article  Google Scholar 

  • 10.

    Creel, S. R. & Waser, P. M. Inclusive fitness and reproductive strategies in dwarf mongooses. Behav. Ecol. 5, 339–348 (1994).

    Article  Google Scholar 

  • 11.

    Balshine-Earn, S., Neat, F., Reid, H. & Taborsky, M. Paying to stay or paying to breed? Field evidence for directbenefits of helping in a cooperatively breeding fish. Behav. Ecol. 9, 432–438 (1998).

    Article  Google Scholar 

  • 12.

    Emlen, S. T. The evolution of helping. I. an ecological constraints model. Am. Nat. 119, 29–53 (1982).

    Article  Google Scholar 

  • 13.

    Hatchwell, B. J. & Komoder, J. Ecological constraints, life history traits and the evolution of cooperative breeding. Anim. Behav. 59, 1079–1086 (2000).

    CAS  Article  Google Scholar 

  • 14.

    Komdeur, J. Importance of habitat saturation and territory quality for evolution of cooperative breeding in the Seychelles warbler. Nature 358, 493–495 (1992).

    Article  Google Scholar 

  • 15.

    Faulkes, C. G. et al. Ecological constraints drive social evolution in the Africa mole rats. Proc. R. Soc. B 264, 1619–1627 (1997).

    CAS  Article  Google Scholar 

  • 16.

    Bergmüller, R., Heg, D. & Taborsky, M. Helpers in a cooperatively breeding cichlid stay and pay or disperse and breed, depending on ecological constraints. Proc. R. Soc. B 272, 325–331 (2005).

    Article  Google Scholar 

  • 17.

    Koenig, W. D. & Pitelka, F. A. Relatedness and inbreeding avoidance: Counterploys in the communally nesting acorn woodpecker. Science 206, 1103–1105 (1979).

    CAS  Article  Google Scholar 

  • 18.

    Cant, M. A., Hodge, S. J., Bell, M. B. V., Gilchrist, J. S. & Nichols, H. J. Reproductive control via eviction (but not the threat of eviction) in banded mongooses. Proc. R. Soc. B 277, 2219–2226 (2010).

    Article  Google Scholar 

  • 19.

    Dey, C. J., Tan, J. Q. Y., O’Connor, C. M., Reddon, A. R. & Caldwell, R. J. Dominance network structure across reproductive contexts in the cooperatively breeding cichlid fish Neolamprologus pulcher. Curr. Zool. 61, 45–54 (2015).

    Article  Google Scholar 

  • 20.

    Cant, M. A. The role of threats in animal cooperation. Proc. R. Soc. B 278, 170–178 (2011).

    Article  Google Scholar 

  • 21.

    Sherman, P. W., Lacey, E. A., Reeve, H. K. & Keller, L. Forum: The eusociality continuum. Behav. Ecol. 6, 102–108 (1995).

    Article  Google Scholar 

  • 22.

    Hing, M. L., Klanten, O. S., Dowton, M. & Wong, M. Y. L. The right tools for the job: cooperative breeding theory and an evaluation of the methodological approaches to understanding the evolution and maintenance of sociality. Front. Ecol. Evol. 5, 100 (2017).

    Article  Google Scholar 

  • 23.

    Fricke, H. & Fricke, S. Monogamy and sex change by aggressive dominance in coral reef fish. Nature 266, 830–832 (1977).

    CAS  Article  Google Scholar 

  • 24.

    Buston, P. M. Size and growth modification in clownfish. Nature 424, 145–146 (2003).

    CAS  Article  Google Scholar 

  • 25.

    Buston, P. M. & Balshine, S. Cooperating in the face of uncertainty: a consistent framework for understanding the evolution of cooperation. Behav. Process. 76, 152–159 (2007).

    Article  Google Scholar 

  • 26.

    Kokko, H., Johnstone, R. A. & Wright, J. The evolution of parental and alloparental effort in cooperatively breeding groups: when should helpers pay to stay? Behav. Ecol. 13, 291–300 (2002).

    Article  Google Scholar 

  • 27.

    Buston, P. M., Bogdanowicz, S. M., Wong, A. & Harrison, R. G. Are clownfish groups composed of relatives? Analysis of microsatellite DNA variation in Amphiprion percula. Mol. Ecol. 16, 3671–3678 (2007).

    CAS  Article  Google Scholar 

  • 28.

    Buston, P. M. Does the presence of non-breeders enhance the fitness of breeders? An experimental analysis in the clown anemonefish Amphiprion percula. Behav. Ecol. Sociobiol. 57, 23–31 (2004).

    Article  Google Scholar 

  • 29.

    Buston, P. M. Territory inheritance in the clown anemonefish. Proc. R. Soc. B (Suppl.) 271, S252–S254 (2004).

    Google Scholar 

  • 30.

    Mariscal, R. N. The nature of the symbiosis between Indo-Pacific anemone fish and seaanemones. Mar. Biol. 6, 58–65 (1970).

    Article  Google Scholar 

  • 31.

    Verwey, J. Coral reef studies. I. The symbiosis between damselfishesand sea anemones in Batavia Bay. Treubia 12, 305–366 (1930).

    Google Scholar 

  • 32.

    Fautin, D. G. The anemonefish symbiosis: what is known and what is not. Symbiosis 10, 23–46 (1991).

    Google Scholar 

  • 33.

    Elliott, J. K., Elliott, J. M. & Mariscal, R. N. Host selection, location and association behaviors of anemonefishes in field settlement experiments. Mar. Biol. 122, 377–389 (1995).

    Article  Google Scholar 

  • 34.

    Elliott, J. & Mariscal, R. Coexistence of nine anemonefish species: differential host and habitat utilization, size and recruitment. Mar. Biol. 138, 23–36 (2001).

    Article  Google Scholar 

  • 35.

    Buston, P. M. Forcible eviction and prevention of recruitment in the clown anemonefish. Behav. Ecol. 14, 576–582 (2003).

    Article  Google Scholar 

  • 36.

    Almany, G. et al. Larval fish dispersal in a coral-reef seascape. Nat. Ecol. Evol. 1, 0148 (2017).

    Article  Google Scholar 

  • 37.

    Buston, P. M. & Garcia, M. B. An extraordinary life span estimate for the clown anemonefish Amphiprion percula. J. Fish. Biol. 70, 1710–1719 (2007).

    Article  Google Scholar 

  • 38.

    Buston, P. M. Mortality is associated with social rank in the clown anemonefish (Amphiprion percula). Mar. Biol. 143, 811–815 (2003).

    Article  Google Scholar 

  • 39.

    Eibl-Eibesfeldt, I. Beobachtungen und Versuche an Anemonenfischen (Amphiprion) der Maldiven und der Nicobaren. Z. Tierpsychol. 17, 1–10 (1960).

    Article  Google Scholar 

  • 40.

    Moyer, J. T. & Nakazono, A. Protandrous hermaphroditism in six species of the anemonefish genus Amphiprion in Japan. Jpn J. Ichthyol. 25, 101–106 (1978).

    Google Scholar 

  • 41.

    Buston, P. M. & Cant, M. A. A new perspective on size hierarchies in nature: patterns, causes and consequences. Oecologia 149, 362–372 (2006).

    Article  Google Scholar 

  • 42.

    Wong. M.Y. Ecological constraints and benefits of philopatry promote group-living in a social but non-cooperatively breeding fish. Proc. R. Soc. B 277, 353–358 (2010).

  • 43.

    Kokko, H., Johnstone, R. A. & Clutton-Brock, T. H. The evolution of cooperative breeding through group augmentationProc. R. Soc. Lond. B. 268, 187–196 (2001).

    CAS  Article  Google Scholar 

  • 44.

    Bourke, A. F. G. Principles of Social Evolution (Oxford University Press, 2011).

  • 45.

    Nonacs, P. Go high or go low? Adaptive evolution of high and low relatedness societies in social hymenoptera. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00087 (2017)

  • 46.

    Grinsted, L. & Field, J. Market forces influence helping behaviour in cooperatively breeding paper wasps. Nat. Commun. 8, 13750 (2017).

    CAS  Article  Google Scholar 

  • 47.

    Wong, Y. L. M., Buston, P. M., Munday, P. L. & Jones, G. P. The threat of punishment enforces peaceful cooperation and stabilizes queues in a coral-reef fish. Proc. Biol. Sci. USA 274, 1093–1099 (2007).

    Google Scholar 

  • 48.

    Rueger, T. et al. Reproductve control via the threat of eviction in the clown anemonefish. Proc. R. Soc. B. 285, 20181295 (2018).

    Article  Google Scholar 

  • 49.

    Barbasch, T. et al. Substantial plasticity of reproduction and parental care in response to local resource availability. Oikos https://doi.org/10.1111/oik.07674 (2020).

  • 50.

    Salles, O. C. et al. Strong habitat and weak genetic effects shape the lifetime reproductive success in a wild clownfish population. Ecol. Lett. 23, 265–273 (2020).

    Article  Google Scholar 

  • 51.

    Holbrook, S. J. & Schmitt, R. J. Growth, reproduction and survival of a tropical sea anemone (Actiniaria): benefits of hosting anemone fish. Coral Reefs 24, 67–73 (2005).

    Article  Google Scholar 

  • 52.

    Cleveland, A., Verde, E. A. & Lee, R. W. Nutritional exchange in a tropical tripartite symbiosis: direct evidence for the transfer of nutrients from anemonefish to host anemone and zooxanthellae. Mar. Biol. 158, 589–602 (2011).

    Article  Google Scholar 

  • 53.

    Porat, D. & Chadwick-Furman, N. E. Effects of anemonefish on giant sea anemones: expansion behavior, growth, and survival. Hydrobiologia 530, 513–520 (2004).

    Google Scholar 

  • 54.

    Réale, D., Reader, S. M., Sol, D., McDougall, P. T. & Dingemanse, N. J. Integrating animal temperament within ecology and evolution. Biol. Rev. Camb. Philos. Soc. 82, 291–318 (2007).

    Article  Google Scholar 

  • 55.

    Schmiege, P. F. P., D’Aloia, C. C. & Buston P. M. Anemonefish personalities influence the strength of mutualistic interactions with host sea anemones. Mar Biol. https://doi.org/10.1007/s00227-016-3053-1 (2017).

  • 56.

    Barbasch, T. A. & Buston, P. M. Plasticity and personality of parental care in the clown anemonefish. Anim. Behav. 136, 65–73 (2018).

    Article  Google Scholar 

  • 57.

    Wong, M. Y. L. et al. Brief communication: consistent behavioural traits and behavioural syndromes in pairs of the false clown anemonefish Amphiprion ocellaris. J. Fish. Biol. 83, 207–213 (2013).

    CAS  Article  Google Scholar 

  • 58.

    Muthoo, A. A non-technical introduction to bargaining theory. World Econ. 1, 145–166 (2000).

    Google Scholar 

  • 59.

    Cant, M. A. & Johnstone, R. A. How threats influence the evolutionary resolution of within-group conflict. Am. Nat. 173, 759-771 (2009).

  • 60.

    Buston, P. M. & Zink, A. G. Reproductive skew and the evolution of conflict resolution: a synthesis of transactional and tug-of-war models. Behav. Ecol. 20, 672–684 (2009).

    Article  Google Scholar 

  • 61.

    Dixson, D. L. et al. Coral reef fish smell leaves to find island homes. Proc. R. Soc. Lond. B Biol. Sci. 275, 2831–2839 (2008).

    Google Scholar 

  • 62.

    Dixson, D. L. et al. Experimental evaluation of imprinting and the role innate preference plays in habitat selection in a coral reef fish. Oecologia 174, 99–107 (2014).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Ecological traits, genetic diversity and regional distribution of the macroalga Treptacantha elegans along the Catalan coast (NW Mediterranean Sea)

    Pushing the envelope with fusion magnets