in

Ecological corridors for the amphibians and reptiles in the Natura 2000 sites of Romania

  • 1.

    Turner, M. G. Landscape ecology: The effects of pattern on process. Annu. Rev. Ecol. Syst. 20, 171–197 (1989).

    Article  Google Scholar 

  • 2.

    Noss, R. F. Wildlife corridors. in Ecology of Greenways (eds. Smith, D. & Hellmund, P.) 43–98 (University of Minesota Press, Minesota, 1993).

  • 3.

    Brooks, T. M. et al. Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol. 16, 909–923 (2002).

    Article  Google Scholar 

  • 4.

    Hanski, I. The Shrinking World: Ecological Consequences of Habitat Loss, Vol. 14 (International Ecology Institute, Philadelphia, 2005).

    Google Scholar 

  • 5.

    IUCN. The World Conservation Strategy. (IUCN, UNEP, 1980).

  • 6.

    IUCN. The IUCN Red List of Threatened Species. Version 2014.3. (2014).

  • 7.

    Dirnböck, T., Dullinger, S. & Grabherr, G. A regional impact assessment of climate and land-use change on alpine vegetation. J. Biogeogr. 30, 401–417 (2003).

    Article  Google Scholar 

  • 8.

    Gonçalves, J., Honrado, J. P., Vicente, J. R. & Civantos, E. A model-based framework for assessing the vulnerability of low dispersal vertebrates to landscape fragmentation under environmental change. Ecol. Complex. 28, 174–186 (2016).

    Article  Google Scholar 

  • 9.

    Saunders, D. A., Hobbs, R. J. & Margules, C. R. Biological consequences of ecosystem fragmentation: A review. Conserv. Biol. 5, 18–32 (1991).

    Article  Google Scholar 

  • 10.

    Fahrig, L. & Merriam, G. Conservation of fragmented populations. Conserv. Biol. 8, 50–59 (1994).

    Article  Google Scholar 

  • 11.

    Wiens, J. A. Habitat fragmentation: Island v landscape perspectives on bird conservation. Ibis 137, S97–S104 (1994).

    Article  Google Scholar 

  • 12.

    Diamond, J. M. ‘Normal’ extinctions of isolated populations. In extinctions (ed. Nitecki, M. H.) 191–246 (University of Chicago Press, Chicago, 1984).

    Google Scholar 

  • 13.

    Laurance, W. F. Comparative responses of five arboreal marsupials to tropical forest fragmentation. J. Mammal. 71, 641–653 (1990).

    Article  Google Scholar 

  • 14.

    Bennett, A. F. Linkages in the Landscape: The Role of Corridors and Connectivity in Wildlife Conservation. (IUCN, 2003).

  • 15.

    Opdam, P. Metapopulation theory and habitat fragmentation: a review of holarctic breeding bird studies. Landsc. Ecol. 5, 93–106 (1991).

    Article  Google Scholar 

  • 16.

    Thomas, C. D. & Jones, T. M. Partial recovery of a skipper butterfly (Hesperia comma) from population refuges: Lessons for conservation in a fragmented landscape. J. Anim. Ecol. 62, 472–481 (1993).

    Article  Google Scholar 

  • 17.

    Haddad, N. M. et al. Corridor use by diverse taxa. Ecology 84, 609–615 (2003).

    Article  Google Scholar 

  • 18.

    Grab, H. et al. Habitat enhancements rescue bee body size from the negative effects of landscape simplification. J. Appl. Ecol. 56, 2144–2154 (2019).

    Article  Google Scholar 

  • 19.

    Smeraldo, S. et al. Modelling risks posed by wind turbines and power lines to soaring birds: The black stork (Ciconia nigra) in Italy as a case study. Biodivers. Conserv. 29, 1959–1976 (2020).

    Article  Google Scholar 

  • 20.

    Noss, R. F. A regional landscape approach to maintain diversity. Bioscience 33, 700–706 (1983).

    Article  Google Scholar 

  • 21.

    Noss, R. F. & Harris, L. D. Nodes, networks and MUMS: Preserving diversity at all scales. Environ. Manag. 10, 299–309 (1986).

    ADS  Article  Google Scholar 

  • 22.

    Grumbine, R. E. What is ecosystem management?. Conserv. Biol. 8, 27–38 (1994).

    Article  Google Scholar 

  • 23.

    Forman, R. T. T. Land Mosaics. The Ecology of Landscapes and Regions ( Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  • 24.

    Jongman, R. H. G. Nature conservation planning in Europe: Developing ecological networks. Landsc. Urban Plan. 32, 169–183 (1995).

    Article  Google Scholar 

  • 25.

    Kubeš, J. Biocentres and corridors in a cultural landscape. A critical assessment of the ‘territorial system of ecological stability’. Landsc. Urban Plan. 35, 231–240 (1996).

    Article  Google Scholar 

  • 26.

    Diamond, J. M. The island dilemma: lessons of modern biogeographic studies for the design of natural reserves. Biol. Cons. 7, 129–146 (1975).

    Article  Google Scholar 

  • 27.

    Wilson, E. O. & Willis, E. O. Applied biogeography. In Ecology and Evolution of Communities (eds Cody, M. L. & Diamond, J. M.) 522–534 (Belknap Press, New York, 1975).

    Google Scholar 

  • 28.

    Soulé, M. E. Land use planning and wildlife maintainance: Guidelines for conserving wildlife in an urban landscape. J. Am. Plan. Assoc. 3, 313–323 (1991).

    Article  Google Scholar 

  • 29.

    Opdam, P., Van Apeldoorn, R., Schotman, A. & Kalkhoven, J. Population responses to landscape fragmentation. In Landscape Ecology of A Stressed Environment (eds Vos, C. C. & Opdam, P.) 147–171 (Chapman and Hall, London, 1993).

    Google Scholar 

  • 30.

    Beier, P. & Noss, R. F. Do habitat corridors provide connectivity?. Conserv. Biol. 12, 1241–1252 (1998).

    Article  Google Scholar 

  • 31.

    Brown, J. H. & Kodric-Brown, A. Turnover rates in insular biogeography: Effect of immigration on extinction. Ecology 58, 445–449 (1977).

    Article  Google Scholar 

  • 32.

    Barrett, G. W. & Bohlen, P. J. Landscape Ecology Landscape Linkages and Biodiversity (Island Press, New York, 1991).

    Google Scholar 

  • 33.

    Forman, R. T. T. & Godron, M. Landscape Ecology (Wiley, New York, 1986).

    Google Scholar 

  • 34.

    Gilbert-Norton, L., Wilson, R., Stevens, J. R. & Beard, K. H. A meta-analytic review of corridor effectiveness. Conserv. Biol. 24, 660–668 (2010).

    Article  Google Scholar 

  • 35.

    Mech, S. G. & Hallett, J. G. Evaluating the effectiveness of corridors: A genetic approach. Conserv. Biol. 15, 467–474 (2001).

    Article  Google Scholar 

  • 36.

    Harris, L. D. & Scheck, J. From implications to applications: the dispersal corridor principle applied to the conservation of biological diversity. in Nature Conservation 2: The Role of Corridors (eds. Saunders, D. A. & Hobbs, R. J.) 189–220 (Surrey Beatty & Sons, 1991).

  • 37.

    Hobbs, R. J. & Hopkins, A. J. M. The role of conservation corridors in a changing climate. In The Role of Corridors (eds Saunders, D. A. & Hobbs, R. J.) 281–290 (Surrey Beaty & Sons, New York, 1991).

    Google Scholar 

  • 38.

    McLaughlin, J. F., Hellmann, J. J., Boggs, C. L. & Ehrlich, P. R. Climate change hastens population extinctions. Proc. Natl. Acad. Sci. 99, 6070–6074 (2002).

    ADS  CAS  Article  Google Scholar 

  • 39.

    Bennett, G. & Mulongoy, K. J. Review of Experience with Ecological Networks, Corridors and Buffer Zones (Secretariat of the Convention on Biological Diversity, 2006).

  • 40.

    MacArthur, R. H. & Wilson, E. O. An equilibrium theory of insular zoogeography. Evolution 17, 373–387 (1963).

    Article  Google Scholar 

  • 41.

    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, Princeton, 1967).

    Google Scholar 

  • 42.

    Hanski, I. & Gilpin, M. Metapopulation dynamics: Brief history and conceptual domain. Biol. J. Lin. Soc. 42, 3–16 (1991).

    Article  Google Scholar 

  • 43.

    Bosso, L., Mucedda, M., Fichera, G., Kiefer, A. & Russo, D. A gap analysis for threatened bat populations on Sardinia. Hystrix Ital. J. Mammal. 27, 11788. https://doi.org/10.4404/hystrix-27.2-11788 (2016).

    Article  Google Scholar 

  • 44.

    Deus, E. et al. Current and future conflicts between eucalypt plantations and high biodiversity areas in the Iberian Peninsula. J. Nat. Conserv. 45, 107–117 (2018).

    Article  Google Scholar 

  • 45.

    Johovic, I., Gama, M., Banha, F., Tricarico, E. & Anastácio, P. M. A potential threat to amphibians in the European Natura 2000 network: Forecasting the distribution of the American bullfrog Lithobates catesbeianus. Biol. Conserv. 245, 108–551. https://doi.org/10.1016/j.biocon.2020.108551 (2020).

    Article  Google Scholar 

  • 46.

    van der Sluis, T. et al. How much Biodiversity is in Natura 2000? The “Umbrella Effect” of the European Natura 2000 protected area network. 147 (Alterra, Wageningen, 2016).

  • 47.

    Natura 2000 https://ec.europa.eu/environment/nature/natura2000/index_en.htm (2019).

  • 48.

    European Comission. Green Infrastructure (GI)—Enhancing Europe’s Natural Capital. 11 (Brussels, 2013).

  • 49.

    European Comission. Technical information on Green Infrastructure (GI). 24 (Brussels, 2013).

  • 50.

    Araújo, M. B., Thuiller, W. & Pearson, R. G. Climate warming and the decline of amphibians and reptiles in Europe. J. Biogeogr. 33, 1712–1728 (2006).

    Article  Google Scholar 

  • 51.

    Bennett, A. F. & Saunders, D. A. Habitat fragmentation and landscape change. In Conservation Biology for All (eds Sodhi, N. S. & Ehrlich, P. R.) 88–106 (Oxford University Press, Oxford, 2010).

    Google Scholar 

  • 52.

    Cushman, S. A. Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biol. Cons. 128, 231–240 (2006).

    Article  Google Scholar 

  • 53.

    Keinath, D. A. et al. A global analysis of traits predicting species sensitivity to habitat fragmentation. Glob. Ecol. Biogeogr. 26, 115–127 (2017).

    Article  Google Scholar 

  • 54.

    Blaustein, A. R. et al. Amphibian breeding and climate change. Conserv. Biol. 15, 1804–1809 (2001).

    Article  Google Scholar 

  • 55.

    Gibbons, W. J. et al. The Global Decline of Reptiles Déjà Vu Amphibians. Bioscience 50, 653–666 (2000).

    Article  Google Scholar 

  • 56.

    Rivera-Ortiz, F. A., Aguilar, R., Arizmendi, M. D. C., Quesada-Avendaño, M. & Oyama, K. Habitat fragmentation and genetic variability of tetrapod populations. Anim. Conserv. 18, 249–258 (2015).

    Article  Google Scholar 

  • 57.

    Andrews, K. M., Gibbons, J. W. & Jochimsen, D. M. Ecological effects of roads on amphibians and reptiles: A literature review. In Urban Herpetology (eds Mitchell, J. C. et al.) 121–143 (Society for the Study of Amphibians & Reptiles, London, 2008).

    Google Scholar 

  • 58.

    Hansen, N. A., Sato, C. F., Michael, D. R., Lindenmayer, D. B. & Driscoll, D. A. Predation risk for reptiles is highest at remnant edges in agricultural landscapes. J. Appl. Ecol. 56, 31–43 (2019).

    Article  Google Scholar 

  • 59.

    McCallum, M. L. Tropical Herpetology: A drop in the bucket. Trends Ecol. Evol. 20, 289–290 (2005).

    Article  Google Scholar 

  • 60.

    Bonnet, X., Shine, R. & Lourdais, O. Taxonomic chauvinism. Trends Ecol. Evol. 17, 1–3 (2002).

    Article  Google Scholar 

  • 61.

    Tingley, R., Meiri, S. & Chapple, D. G. Addressing knowledge gaps in reptile conservation. Biol. Cons. 204, 1–5 (2016).

    Article  Google Scholar 

  • 62.

    Beier, P., Majka, D. & Jenness, J. Conceptual Steps for Designing Wildlife Corridors. www.corridordesign.org (2007).

  • 63.

    Valencia-Aguilar, A., Cortés-Gómez, A. M. & Ruiz-Agudelo, C. A. Ecosystem services provided by amphibians and reptiles in Neotropical ecosystems. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 9, 257–272 (2013).

    Article  Google Scholar 

  • 64.

    Hager, H. A. Area-sensitivity of reptiles and amphibians: Are there indicator species for habitat fragmentation?. Écoscience 66, 139–147 (1998).

    Article  Google Scholar 

  • 65.

    Almasieh, K., Mirghazanfari, S. M. & Mahmoodi, S. Biodiversity hotspots for modeled habitat patches and corridors of species richness and threatened species of reptiles in central Iran. Eur. J. Wildl. Res. 65, 92. https://doi.org/10.1007/s10344-019-1335-x (2019).

    Article  Google Scholar 

  • 66.

    Albert, C., Luque, G. M. & Courchamp, F. The twenty most charismatic species. PLoS ONE 13, e0199149. https://doi.org/10.1371/journal.pone.0199149 (2018).

    CAS  Article  Google Scholar 

  • 67.

    Brooke, Z. M., Bielby, J., Nambiar, K. & Carbone, C. correlates of research effort in carnivores: Body size, range size and diet matter. PLoS ONE 9, e93195. https://doi.org/10.1371/journal.pone.0093195 (2014).

    ADS  CAS  Article  Google Scholar 

  • 68.

    Rozylowicz, L., Popescu, V. D., Pătroescu, M. & Chișamera, G. The potential of large carnivores as conservation surrogates in the Romanian Carpathians. Biodivers. Conserv. 20, 561–579 (2011).

    Article  Google Scholar 

  • 69.

    Beier, P., Majka, D. R. & Spencer, W. D. Forks in the road choices in procedures for designing wildland linkages. Conserv. Biol. 22, 836–851 (2008).

    Article  Google Scholar 

  • 70.

    Burbrink, F. T., Phillips, C. A. & Heske, E. J. A riparian zone in southern Illinois as a potential dispersal corridor for reptiles and amphibians. Biol. Cons. 86, 107–115 (1998).

    Article  Google Scholar 

  • 71.

    Dixo, M. & Metzger, J. P. Are corridors, fragment size and forest structure important for the conservation of leaf-litter lizards in a fragmented landscape?. Oryx 43, 435–442 (2009).

    Article  Google Scholar 

  • 72.

    ArcGIS Release 10.4 (Redlands, CA, 2013).

  • 73.

    Hamer, A. J. & McDonnell, M. J. The response of herpetofauna to urbanization: Inferring patterns of persistence from wildlife databases. Austral Ecol. 35, 568–580 (2010).

    Article  Google Scholar 

  • 74.

    Vignoli, L., Mocaer, I., Luiselli, L. & Bologna, M. A. Can a large metropolis sustain complex herpetofauna communities? An analysis of the suitability of green space fragments in Rome. Anim. Conserv. 12, 456–466 (2009).

    Article  Google Scholar 

  • 75.

    Strugariu, A., Gherghel, I., Huțuleac-Volosciuc, M. V. & Pușcașu, C. M. Preliminary aspects concerning the herpetofauna from urban and peri-urban environments from North-Eastern Romania: A case study in the city of Suceava. Herpetol. Roman. 1, 53–61 (2007).

    Google Scholar 

  • 76.

    Gherghel, I., Strugariu, A., Sahlean, T. C. & Zamfirescu, O. Anthropogenic impact or anthropogenic accommodation? Distribution range expansion of the common wall lizard (Podarcis muralis) by means of artificial habitats in the north-eastern limits of its distribution range. Acta Herpetol. 4, 183–189 (2009).

    Google Scholar 

  • 77.

    Gherghel, I. & Tedrow, R. Manmade structures are used by an invasive species to colonize new territory across a fragmented landscape. Acta Oecol. 101, 103479. https://doi.org/10.1016/j.actao.2019.103479 (2019).

    Article  Google Scholar 

  • 78.

    Ward, M. et al. Just ten percent of the global terrestrial protected area network is structurally connected via intact land. Nat. Commun. 11, 4563. https://doi.org/10.1038/s41467-020-18457-x (2020).

    CAS  Article  Google Scholar 

  • 79.

    Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).

    Article  Google Scholar 

  • 80.

    Fitzgerald, L. A. et al. The future for reptiles: advances and challenges in the anthropocene. Encycl. Anthropocene 3, 163–174 (2018).

    Article  Google Scholar 

  • 81.

    Hof, C., Araújo, M. B., Jetz, W. & Rahbek, C. Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature 480, 516–519 (2011).

    ADS  CAS  Article  Google Scholar 

  • 82.

    Meta-Analysis, A. Rey Benayas, J. M., Newton, A. C., Diaz, A. & Bullock, J. M. Enhancement of biodiversity and ecosystem services by ecological restoration. Science 325, 1121–1124 (2009).

    Article  CAS  Google Scholar 

  • 83.

    Van Der Windt, H. J. & Swart, J. A. A. Ecological corridors, connecting science and politics: the case of the Green River in the Netherlands. J. Appl. Ecol. 45, 124–132 (2008).

    Article  Google Scholar 

  • 84.

    Hilty, J. et al. Guidelines for conserving connectivity through ecological networks and corridors (International Union for Conservation of Nature, 2020).

  • 85.

    Gregory, A. J. & Beier, P. Response variables for evaluation of the effectiveness of conservation corridors. Conserv. Biol. 28, 689–695 (2014).

    Article  Google Scholar 

  • 86.

    Mráz, P. & Ronikier, M. Biogeography of the Carpathians: Evolutionary and spatial facets of biodiversity. Biol. J. Lin. Soc. 119, 528–559 (2016).

    Article  Google Scholar 

  • 87.

    Deodatus, F. et al. Creation of ecological corridors in the Ukrainian Carpathians. In The Carpathians: Integrating Nature and Society Towards Sustainability Environmental Science and Engineering (eds Kozak, J. et al.) 701–717 (Springer, Berlin, 2013).

    Google Scholar 

  • 88.

    Favilli, F., Hoffmann, C., Elmi, M., Ravazzoli, E. & Streifeneder, T. The BioREGIO Carpathians project: Aims, methodology and results from the “Continuity and Connectivity” analysis. Nat. Conserv. 11, 95–111 (2015).

    Article  Google Scholar 

  • 89.

    Csagoly, P., Magnin, G. & Hulea, O. Lower Danube Green Corridor. in The Wetland Book: II: Distribution, Description and Conservation (eds. Finlayson, M. C., Milton, R. G., Prentice, C. R. & Davidson, N. C.) 1–6 (Springer, Netherlands, 2016).

  • 90.

    Belote, R. T. et al. Identifying corridors among large protected areas in the United States. PLoS ONE 11, e0154223. https://doi.org/10.1371/journal.pone.0154223 (2016).

    CAS  Article  Google Scholar 

  • 91.

    Breckheimer, I. et al. Defining and evaluating the umbrella species concept for conserving and restoring landscape connectivity. Conserv. Biol. 28, 1584–1593 (2014).

    Article  Google Scholar 

  • 92.

    Meurant, M., Gonzales, A., Doxa, A. & Albert, C. H. Selecting surrogate species for connectivity conservation. Biol. Cons. 227, 326–334 (2018).

    Article  Google Scholar 

  • 93.

    Dondina, O., Orioli, V., Chiatante, G. & Bani, L. Practical insights to select focal species and design priority areas for conservation. Ecol. Indic. 108, 105767. https://doi.org/10.1016/j.ecolind.2019.105767 (2020).

    Article  Google Scholar 

  • 94.

    Churko, G., Kienast, F. & Bolliger, J. A multispecies assessment to identify the functional connectivity of amphibians in a human-dominated landscape. Int. J. Geo-Inf. 9, 287. https://doi.org/10.3390/ijgi9050287 (2020).

    Article  Google Scholar 

  • 95.

    Cushman, S. A. & Landguth, E. L. Multi-taxa population connectivity in the Northern Rocky Mountains. Ecol. Model. 231, 101–112 (2012).

    Article  Google Scholar 

  • 96.

    Krosby, M. et al. Focal species and landscape “naturalness” corridor models offer complementary approaches for connectivity conservation planning. Landsc. Ecol. 30, 2121–2132 (2015).

    Article  Google Scholar 

  • 97.

    Wiens, J. A., Hayward, G. D., Holthausen, R. S. & Wisdom, M. J. Using surrogate species and groups for conservation planning and management. Bioscience 58, 241–252 (2008).

    Article  Google Scholar 

  • 98.

    Macdonald, E. A. et al. Identifying ambassador species for conservation marketing. Glob. Ecol. Conserv. 12, 204–214 (2017).

    Article  Google Scholar 

  • 99.

    Fleury, A. M. & Brown, R. D. A framework for the design of wildlife conservation corridors with specific application to southwestern Ontario. Landsc. Urban Plan. 37, 163–186 (1997).

    Article  Google Scholar 

  • 100.

    Cogălniceanu, D. et al. Diversity and distribution of amphibians in Romania. ZooKeys 296, 35–57 (2013).

    Article  Google Scholar 

  • 101.

    Cogălniceanu, D. et al. Diversity and distribution of reptiles in Romania. ZooKeys 341, 49–76 (2013).

    Article  Google Scholar 

  • 102.

    LaRue, M. A. & Nielsen, C. K. Modelling potential dispersal corridors for cougars in midwestern North America using least-cost path methods. Ecol. Model. 212, 372–381 (2008).

    Article  Google Scholar 

  • 103.

    Adriaensen, F. et al. The application of ‘least-cost’ modelling as a functional landscape model. Landsc. Urban Plan. 64, 233–247 (2003).

    Article  Google Scholar 

  • 104.

    Correa Ayram, C. A., Mendoza, M. E., Etter, A. & Salicrup, D. R. P. Habitat connectivity in biodiversity conservation: a review of recent studies and applications. Prog. Phys. Geogr. 1, 1–32 (2015).

    Google Scholar 

  • 105.

    Ribeiro, J. W. et al. LandScape Corridors (LSCORRIDORS): A new softwarepackage for modelling ecological corridors based onlandscape patterns and species requirements. Methods Ecol. Evol. 8, 1425–1432 (2017).

    Article  Google Scholar 

  • 106.

    Linkage Mapper Connectivity Analysis Software v. 2.0.0 (The Nature Conservancy, Seattle, 2011).

  • 107.

    Popescu, V. D., Rozylowicz, L., Cogălniceanu, D., Niculae, I. M. & Cucu, A. L. Moving into protected areas? Setting conservation priorities for Romanian Reptiles and Amphibians at risk from climate change. PLoS ONE 8, e79330. https://doi.org/10.1371/journal.pone.0079330 (2014).

    ADS  CAS  Article  Google Scholar 

  • 108.

    Lambeck, R. J. Focal species: A multispecies umbrella for nature conservation. Conserv. Biol. 11, 849–856 (1997).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Environmental Solutions Initiative puts sustainability front and center at the MIT career fair

    Schrenk spruce leaf litter decomposition varies with snow depth in the Tianshan Mountains