in

Ecological drivers of genetic connectivity for African malaria vectors Anopheles gambiae and An. arabiensis

  • 1.

    World Health Organization. World malaria report 2019 (WHO, Geneva, 2019).

    Google Scholar 

  • 2.

    Wirtz, R. A. & Burkot, T. R. Detection of malarial parasites in mosquitoes. In Advances in Disease Vector Research (eds Maudlin, I. & Sinha, R. C.) (Sprinter, New York, 1991).

    Google Scholar 

  • 3.

    Trape, J. F. & Rogier, C. Combating malaria morbidity and mortality by reducing transmission. Parasitol. Today 12, 236–240 (1996).

    CAS  PubMed  Article  Google Scholar 

  • 4.

    Mala, A. O. et al. Plasmodium falciparum transmission and aridity: a Kenyan experience from the dry lands of Baringo and its implications for Anopheles arabiensis control. Malar. J. 10, 121 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 5.

    Macdonald, G. The Epidemiology and Control of Malaria (Oxford Univ. Press, London, 1957).

    Google Scholar 

  • 6.

    Gillies, M. & de Meillon, B. The Anophelini of Africa South of the Sahara (Ethiopian Zoogeographical Region) (South African Institute of Medical Research, Johannesburg, 1968).

    Google Scholar 

  • 7.

    Service, M. W. Mosquito (Diptera: Culicidae) dispersal—the long and short of it. J. Med. Entomol. 34, 579–588 (1997).

    Article  Google Scholar 

  • 8.

    Hemming-Schroeder, E., Lo, E., Salazar, C., Puente, S. & Yan, G. Landscape genetics: a toolbox for studying vector-borne diseases. Front. Ecol. Evol. 6, 21 (2018).

    ADS  Article  Google Scholar 

  • 9.

    Ramsdale, C. D. & Fontaine, R. E. Ecological Investigations of Anopheles gambiae and Anopheles funestus (World Health Organization, Geneva, 1970).

    Google Scholar 

  • 10.

    Charlwood, J. D., Vij, R. & Billingsley, P. F. Dry season refugia of malaria-transmitting mosquitoes in a dry savannah zone of east Africa. Am. J. Trop. Med. Hyg. 62, 726–732 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 11.

    Aniedu, I. Dynamics of malaria transmission near two permanent breeding sites in Baringo district, Kenya. Indian J. Med. Res. 105, 206–211 (1997).

    CAS  PubMed  Google Scholar 

  • 12.

    Kamau, L. et al. Analysis of genetic variability in Anopheles arabiensis and Anopheles gambiae using microsatellite loci. Insect Mol. Biol. 8, 287–297 (1999).

    CAS  PubMed  Article  Google Scholar 

  • 13.

    Lehmann, T. et al. Genetic differentiation of Anopheles gambiae populations from East and West Africa: comparison of microsatellite and allozyme loci. Heredity 77, 192–200 (1996).

    CAS  PubMed  Article  Google Scholar 

  • 14.

    Kamau, L., Lehmann, T., Hawley, W. A., Orago, A. S. & Collins, F. H. Microgeographic genetic differentiation of Anopheles gambiae mosquitoes from Asembo Bay, western Kenya: a comparison with Kilifi in coastal Kenya. Am. J. Trop. Med. Hyg. 58, 64–66 (1998).

    CAS  PubMed  Article  Google Scholar 

  • 15.

    Storfer, A. et al. Putting the ‘landscape’ in landscape genetics. Heredity 98, 128–142 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 16.

    Biek, R. & Real, L. A. The landscape genetics of infectious disease emergence and spread. Mol. Ecol. 19, 3515–3531 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Storfer, A., Murphy, M. A., Spear, S. F., Holderegger, R. & Waits, L. P. Landscape genetics: Where are we now?. Mol. Ecol. 19, 3496–3514 (2010).

    PubMed  Article  Google Scholar 

  • 18.

    Medley, K. A., Jenkins, D. G. & Hoffman, E. A. Human-aided and natural dispersal drive gene flow across the range of an invasive mosquito. Mol. Ecol. 24, 284–295 (2015).

    PubMed  Article  Google Scholar 

  • 19.

    Blanchong, J. A. et al. Landscape genetics and the spatial distribution of chronic wasting disease. Biol. Lett. 4, 130–133 (2008).

    PubMed  Article  Google Scholar 

  • 20.

    Cullingham, C. I., Kyle, C. J., Pond, B. A., Rees, E. E. & White, B. N. Differential permeability of rivers to raccoon gene flow corresponds to rabies incidence in Ontario, Canada. Mol. Ecol. 18, 43–53 (2009).

    PubMed  Google Scholar 

  • 21.

    Côté, H., Garant, D., Robert, K., Mainguy, J. & Pelletier, F. Genetic structure and rabies spread potential in raccoons: the role of landscape barriers and sex-biased dispersal. Evol. Appl. 5, 393–404 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Guivier, E. et al. Landscape genetics highlights the role of bank vole metapopulation dynamics in the epidemiology of Puumala hantavirus. Mol. Ecol. 20, 3569–3583 (2011).

    CAS  PubMed  Google Scholar 

  • 23.

    Carrel, M., Wan, X. F., Nguyen, T. & Emch, M. Genetic variation of highly pathogenic H5N1 avian influenza viruses in Vietnam shows both species-specific and spatiotemporal associations. Avian Dis. 55, 659–666 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Lo, E. et al. Transmission dynamics of co-endemic Plasmodium vivax and P. falciparum in Ethiopia and prevalence of antimalarial resistant genotypes. PLoS Negl. Trop. Dis. 11, e0005806 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Lo, E. et al. Frequent spread of Plasmodium vivax malaria maintains high genetic diversity at the Myanmar–China Border, without distance and landscape barriers. J. Infect. Dis. 216, 1254–1263 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Lehmann, T. et al. Microgeographic structure of Anopheles gambiae in western Kenya based on mtDNA and microsatellite loci. Mol. Ecol. 6, 243–253 (1997).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Bayoh, M. N. et al. Anopheles gambiae: historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province, Kenya. Malar. J. 9, 62 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Kitau, J. et al. Species shifts in the Anopheles gambiae complex: do LLINs successfully control Anopheles arabiensis?. PLoS ONE 7, e31481 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Mwangangi, J. M. et al. The role of Anopheles arabiensis and Anopheles coustani in indoor and outdoor malaria transmission in Taveta District, Kenya. Parasit. Vectors 6, 114 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Ototo, E. N. et al. Surveillance of malaria vector population density and biting behaviour in western Kenya. Malar. J. 14, 244 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Sougoufara, S., Harry, M., Doucouré, S., Sembène, P. M. & Sokhna, C. Shift in species composition in the Anopheles gambiae complex after implementation of long-lasting insecticidal nets in Dielmo, Senegal. Med. Vet. Entomol. 30, 365–368 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 32.

    Hemming-Schroeder, E. et al. Emerging pyrethroid resistance among Anopheles arabiensis in Kenya. Am. J. Trop. Med. Hyg. 98, 704–709 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Githeko, A. K. et al. Some observations on the biting behavior of Anopheles gambiae ss, Anopheles arabiensis, and Anopheles funestus and their implications for malaria control. Exp. Parasitol. 82, 306–315 (1996).

    CAS  PubMed  Article  Google Scholar 

  • 34.

    Massebo, F., Balkew, M., Gebre-Michael, T. & Lindtjørn, B. Blood meal origins and insecticide susceptibility of Anopheles arabiensis from Chano in South-West Ethiopia. Parasit. Vectors 6, 44 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Tirados, I., Costantini, C., Gibson, G. & Torr, S. J. Blood-feeding behaviour of the malarial mosquito Anopheles arabiensis: implications for vector control. Med. Vet. Entomol. 20, 425–437 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 36.

    Sinka, M. E. et al. The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis. Parasit. Vectors 3, 117 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Charlwood, J. D. et al. The rise and fall of Anopheles arabiensis (Diptera: Culicidae) in a Tanzanian village. Bull. Entomol. Res. 85, 37–44 (1995).

    Article  Google Scholar 

  • 38.

    Drake, J. M. & Beier, J. C. Ecological niche and potential distribution of Anopheles arabiensis in Africa in 2050. Malar. J. 13, 213 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Donnelly, M. J., Cuamba, N., Charlwood, J. D., Collins, F. H. & Townson, H. Population structure in the malaria vector, Anopheles arabiensis Patton, in East Africa. Heredity 83, 408–417 (1999).

    PubMed  Article  Google Scholar 

  • 40.

    Donnelly, M. J. & Townson, H. Evidence for extensive genetic differentiation among populations of the malaria vector Anopheles arabiensis in Eastern Africa. Insect Mol. Biol. 9, 357–367 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 41.

    Donnelly, M. J., Licht, M. C. & Lehmann, T. Evidence for recent population expansion in the evolutionary history of the malaria vectors Anopheles arabiensis and Anopheles gambiae. Mol. Biol. Evol. 18, 1353–1364 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 42.

    Minakawa, N. et al. Spatial distribution of anopheline larval habitats in Western Kenyan highlands: effects of land cover types and topography. Am. J. Trop Med. Hyg. 73, 157–165 (2005).

    PubMed  Article  Google Scholar 

  • 43.

    Muturi, E. J. et al. Population genetic structure of Anopheles arabiensis (Diptera: Culicidae) in a rice growing area of central Kenya. J. Med. Entomol. 47, 144–151 (2014).

    Article  Google Scholar 

  • 44.

    Gray, E. M. & Bradley, T. J. Physiology of desiccation resistance in Anopheles gambiae and Anopheles arabiensis. Am. J. Trop Med. Hyg. 73, 553–559 (2005).

    PubMed  Article  Google Scholar 

  • 45.

    Yamana, T. K. & Eltahir, E. A. Incorporating the effects of humidity in a mechanistic model of Anopheles gambiae mosquito population dynamics in the Sahel region of Africa. Parasit. Vectors 6, 235 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Nkumama, I. N., O’Meara, W. P. & Osier, F. H. Changes in malaria epidemiology in Africa and new challenges for elimination. Trends Parasitol. 33, 128–140 (2017).

    PubMed  Article  Google Scholar 

  • 47.

    Chen, H. et al. Monooxygenase levels and knockdown resistance (kdr) allele frequencies in Anopheles gambiae and Anopheles arabiensis in Kenya. J. Med. Entomol. 45, 242–250 (2014).

    Article  Google Scholar 

  • 48.

    Severson, D. W. RFLP analysis of insect genomes. In The Molecular Biology of Insect Disease Vectors (eds Crampton, J. M. et al.) (Springer, Dordrecht, 1997).

    Google Scholar 

  • 49.

    Scott, J. A., Brogdon, W. G. & Collins, F. H. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am. J. Trop. Med. Hyg. 49, 520–529 (1993).

    CAS  PubMed  Article  Google Scholar 

  • 50.

    Zheng, L., Benedict, M. Q., Cornel, A. J., Collins, F. H. & Kafatos, F. C. An integrated genetic map of the African human malaria vector mosquito, Anopheles gambiae. Genetics 143, 941–952 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 51.

    Oetting, W. S. et al. Linkage analysis with multiplexed short tandem repeat polymorphisms using infrared fluorescence and M13 tailed primers. Genomics 30, 450–458 (1995).

    CAS  PubMed  Article  Google Scholar 

  • 52.

    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).

    PubMed  Article  Google Scholar 

  • 53.

    Raymond, M. & Rousset, F. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).

    Article  Google Scholar 

  • 54.

    Rousset, F. Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).

    PubMed  Article  Google Scholar 

  • 55.

    Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788 (2013).

    Article  Google Scholar 

  • 56.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 57.

    Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour 15, 1179–1191 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 58.

    Bates, D. et al. Package ‘lme4’. Convergence 12, 2 (2015).

    Google Scholar 

  • 59.

    Beerli, P. & Felsenstein, J. Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc. Natl. Acad. Sci. 98, 4563–4568 (2001).

    ADS  CAS  PubMed  MATH  Article  Google Scholar 

  • 60.

    Cushman, S., Storfer, A. & Waits, L. Landscape Genetics: Concepts, Methods, Applications (Wiley, West Sussex, 2015).

    Google Scholar 

  • 61.

    Roy, J. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. J. R. Meteor. Soc. 25, 1965–1978 (2005).

    Google Scholar 

  • 62.

    Channan, S., Collins, K. & Emanuel, W. R. Global Mosaics of the Standard MODIS Land Cover Type Data (University of Maryland and the Pacific Northwest National Laboratory, College Park, 2014).

    Google Scholar 

  • 63.

    Friedl, M. A. et al. MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).

    ADS  Article  Google Scholar 

  • 64.

    Tatem, A. J. WorldPop, open data for spatial demography. Sci. Data 4, 1–4 (2017).

    Article  Google Scholar 

  • 65.

    McRae, B. H., Dickson, B. G., Keitt, T. H. & Shah, V. B. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89, 2712–2724 (2008).

    PubMed  Article  Google Scholar 

  • 66.

    Adamack, A. T. & Gruber, B. PopGenReport: simplifying basic population genetic analyses in R. Methods Ecol. Evol. 5, 384–387 (2014).

    Article  Google Scholar 

  • 67.

    Peterman, W. E. ResistanceGA: An R package for the optimization of resistance surfaces using genetic algorithms. Methods Ecol. Evol. 9, 1638–1647 (2018).

    Article  Google Scholar 

  • 68.

    Peterman, W. E. et al. A comparison of popular approaches to optimize landscape resistance surfaces. Landsc. Ecol. 34, 2197–2208 (2019).

    Article  Google Scholar 

  • 69.

    Oyler-McCance, S. J., Fedy, B. C. & Landguth, E. L. Sample design effects in landscape genetics. Conserv. Genet. 14, 275–285 (2013).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Negative to positive shifts in diversity effects on soil nitrogen over time

    Fire-scarred fossil tree from the Late Triassic shows a pre-fire drought signal