in

Ecological niche modeling of the pantropical orchid Polystachya concreta (Orchidaceae) and its response to climate change

  • 1.

    Dressler, R. L. In Phylogeny and Classification of the Orchid Family (ed. Dressler, R. L.) 7–13 (Cambridge University Press, Cambridge, 1994).

    Google Scholar 

  • 2.

    Delforge, P. In Orchids of Europe, Nord Africa and the Middle East (ed. Delforge, P.) 67–68 (A & C Black Publishers, London, 2001).

    Google Scholar 

  • 3.

    Barman, D. & Devadas, R. Climate change on orchid population and conservation strategies: a review. J. Crop Weed. 9(12), 1–12 (2013).

    Google Scholar 

  • 4.

    Fay, M. F. Orchid conservation: how can we meet the challenges in the twenty-first century. Bot. Stud. 5, 1–6 (2018).

    Google Scholar 

  • 5.

    Brovkin, V. Climate–vegetation interaction. J. Phys. IV FRANCE 12, 57–72 (2002).

    Google Scholar 

  • 6.

    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148. https://doi.org/10.1038/nature02121 (2004).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 7.

    Anderson, M. G. & Ferree, C. E. Conserving the stage: climate change and the geophysical underpinnings of species diversity. PLoS ONE 5(7), e11554 (2010).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 8.

    Bálint, M. et al. Cryptic biodiversity loss linked to global climate change. Nat. Clim. Change. 1, 313–318. https://doi.org/10.1038/nclimate1191 (2011).

    ADS  Article  Google Scholar 

  • 9.

    Kolanowska, M. Niche conservatism and the future potential range of Epipactis helleborine (Orchidaceae). PLoS ONE 8(10), e77352. https://doi.org/10.1371/journal.pone.0077352 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 10.

    Kolanowska, M. The naturalization status of African Spotted Orchid (Oeceoclades maculata) in Neotropics. Plant Biosyst. 148(5), 1049–1055. https://doi.org/10.1080/11263504.2013.824042 (2014).

    Article  Google Scholar 

  • 11.

    Kolanowska, M. & Konowalik, K. Niche conservatism and future changes in the potential area coverage of Arundina graminifolia, an invasive orchid species from Southeast Asia. Biotropica 46(2), 157–165. https://doi.org/10.1111/btp.12089 (2014).

    Article  Google Scholar 

  • 12.

    Konowalik, K. & Kolanowska, M. Climatic niche shift and possible future spread of the invasive South African Orchid Disa bracteata in Australia and adjacent areas. PeerJ. 6, e6107. https://doi.org/10.7717/peerj.6107 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 13.

    Kolanowska, M. et al. Global warming not so harmful for all plants – response of holomycotrophic orchid species for the future climate change. Sci. Rep. 7, 12704. https://doi.org/10.1038/s41598-017-13088-7 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 14.

    Naczk, A. & Kolanowska, M. Glacial refugia and future habitat coverage of selected Dactylorhiza representatives (Orchidaceae). PLoS ONE 10(11), e0143478. https://doi.org/10.1371/journal.pone.0143478 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 15.

    Kolanowska, M. & Rykaczewski, M. From the past to the future – glacial refugia, current distribution patterns and future potential range changes of Diodonopsis (Orchidaceae) representatives. Lankesteriana. 17(2), 315–327 (2017).

    Google Scholar 

  • 16.

    Wang, H. H. et al. Species distribution modelling for conservation of an endangered endemic orchid. AoB Plants 7, plv039 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 17.

    Tsiftsis, S., Djordjević, V. & Tsiripidis, I. Neottia cordata (Orchidaceae) at its southernmost distribution border in Europe: threat status and effectiveness of Natura 2000 Network for its conservation. J. Nat. Conserv. 48, 27–35 (2019).

    Google Scholar 

  • 18.

    Vollering, J., Schuiteman, A., de Vogel, E., van Vugt, R. & Raes, N. Phytogeography of New Guinean orchids: patterns of species richness and turnover. J. Biogeogr. 43(1), 204–214 (2016).

    Google Scholar 

  • 19.

    Reina-Rodríguez, G. A., Rubiano Mejía, J. E., Castro Llanos, F. A. & Soriano, I. Orchid distribution and bioclimatic niches as a strategy to climate change in areas of tropical dry forest in Colombia. Lankesteriana 17(1), 17–47 (2017).

    Google Scholar 

  • 20.

    Gogol-Prokurat, M. Predicting habitat suitability for rare plants at local spatial scales using a species distribution model. Ecol. Appl. 21, 33–47. https://doi.org/10.1890/09-1190.1 (2011).

    Article  PubMed  Google Scholar 

  • 21.

    Dudley, T. L. & Bean, D. W. Tamarisk biocontrol, endangered species risk and resolution of conflict through riparian restoration. Biocontrol 57, 331–347. https://doi.org/10.1007/s10526-011-9436-9 (2012).

    Article  Google Scholar 

  • 22.

    Antúnez, P. et al. The potential distribution of tree species in three periods of time under a climate change scenario. Forests 9(10), 628. https://doi.org/10.3390/f9100628 (2018).

    Article  Google Scholar 

  • 23.

    Wilson, C. D., Roberts, D. & Reid, N. Applying species distribution modeling to identify areas of high conservation value for endangered species: a case study using Margaritifera margaritifera (L.). Biol. Cons. 144, 821–829 (2011).

    Google Scholar 

  • 24.

    Koch, R., Almeida-Cortez, J. S. & Kleinschmit, B. Revealing areas of high nature conservation importance in a seasonally dry tropical forest in Brazil: combination of modelled plant diversity hot spots and threat patterns. J. Nat. Conserv. 35, 24–39 (2017).

    Google Scholar 

  • 25.

    Spiers, J. A., Oatham, M. P., Rostant, L. V. & Farrell, A. D. Applying species distribution modelling to improving conservation based decisions: a gap analysis of Trinidad and Tobago’s endemic vascular plants. Biodivers. Conserv. 27(11), 2931–2949 (2018).

    Google Scholar 

  • 26.

    Ramírez, S. R., Gravendeel, B., Singer, R. B., Marshall, C. R. & Pierce, N. E. Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature 448, 1042–1045 (2007).

    ADS  PubMed  Google Scholar 

  • 27.

    Conran, J. G., Bannister, J. M. & Lee, D. E. Earliest orchid macrofossils: early Miocene Dendrobium and Earina (Orchidaceae: Epidendroideae) from New Zealand. Am. J. Bot. 96(2), 466–474 (2009).

    PubMed  Google Scholar 

  • 28.

    Kenny, J. 2008. Orchids of Trinidad and Tobago (ed. Kenny, J.) 1–127 (Prospect Press, 2008).

  • 29.

    Swarts, N. D. & Dixon, K. W. Terrestrial orchid conservation in the age of extinction. Ann. Bot. 104(3), 543–556 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 30.

    Teketay, D. History, botany and ecological requirements of coffee. Walia 20, 28–50 (1999).

    Google Scholar 

  • 31.

    Tupac, O. J., Ackerman, J. D. & Bayman, P. Diversity and host specificity of endophytic Rhizoctonia-like fungi from tropical orchids. Am. J. Bot. 89(11), 1852–1858 (2002).

    Google Scholar 

  • 32.

    Pellegrino, G., Luca, A. & Bellusci, F. Relationships between orchid and fungal biodiversity: mycorrhizal preferences in Mediterranean orchids. Plant Biosyst. 150(2), 180–189 (2016).

    Google Scholar 

  • 33.

    Suárez, J. P. & Kottke, I. Main fungal partners and different levels of specificity of orchid mycorrhizae in the tropical mountain forests of Ecuador. Lankesteriana 16(2), 299–305 (2016).

    Google Scholar 

  • 34.

    Senthilkumar, S. Mycorrhizal fungi of endangered orchid species in Kolli, a part of eastern ghats, South India. Lankesteriana 7, 15–156 (2003).

    Google Scholar 

  • 35.

    Pereira, O. L., Rollemberg, C. L., Borges, A. C., Matsuoka, K. & Kasuya, M. C. M. Epulorhiza epiphytica sp. nov. isolated from mycorrhizal roots of epiphytic orchids in Brazil. Mycoscience 44, 153–155 (2003).

    Google Scholar 

  • 36.

    Tedersoo, L. Biogeography of mycorrhizal symbiosis (Springer, Cham, 2017).

    Google Scholar 

  • 37.

    Waud, M., Brys, R., Van Landuyt, W., Lievens, B. & Jacquemyn, H. Mycorrhizal specificity does not limit the distribution of an endangered orchid species. Mol. Ecol. 26(6), 1687–1701 (2017).

    CAS  PubMed  Google Scholar 

  • 38.

    van der Cingel, N. A. An atlas of orchid pollination: America, Africa, Asia and Australia (A.A. Balkema Publishers, Rotterdam, 2001).

    Google Scholar 

  • 39.

    Pansarin, E. R. & Maria do Carmo, E. A. Biologia reprodutiva e polinização de duas espécies de Polystachya Hook. no Sudeste do Brasil: evidência de pseudocleistogamia em Polystachyeae (Orchidaceae). Rev. Bras. Bot. 29(3), 423–432 (2006).

  • 40.

    Chakraborty, D. et al. Selecting populations for non-analogous climate conditions using universal response functions: the case of Douglas-Fir in Central Europe. PLoS ONE 10(8), e0136357 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 41.

    Broennimann, O. & Guisan, A. Predicting current and future biological invasions: both native and invaded ranges matter. Biol. Lett. 4, 585–589 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 42.

    Abrams, M. D. Adaptations of forest ecosystems to air pollution and climate change. Tree Physiol. 31, 258–261 (2011).

    PubMed  Google Scholar 

  • 43.

    Atwater, D. Z., Ervine, C. & Barney, J. N. Climatic niche shifts are common in introduced plants. Nat. Ecol. Evol. 2, 34–43 (2018).

    PubMed  Google Scholar 

  • 44.

    Konowalik, K. & Kolanowska, M. Climatic niche shift and possible future spread of the invasive South African Orchid Disa bracteata in Australia and adjacent areas. PeerJ 6, e6107 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 45.

    Early, R. & Sax, D. F. Climatic niche shifts between species’ native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. Global Ecol. Biogeogr. 23, 1356–1365 (2014).

    Google Scholar 

  • 46.

    Baranow, P. & Mytnik-Ejsmont, J. Two new species of Polystachya Hook. (Orchidaceae) from Africa. Plant Syst Evol. 281, 11–16 (2009).

    Google Scholar 

  • 47.

    Mytnik-Ejsmont, J. & Baranow, P. Taxonomic study of Polystachya Hook. (Orchidaceae) from Asia. Plant Syst. Evol. 290, 57–63 (2010).

    Google Scholar 

  • 48.

    Russell, A. et al. Phylogenetics and cytology of a pantropical orchid genus Polystachya (Polystachyinae, Vandeae, Orchidaceae): Evidence from plastid DNA sequence data. Taxon 59(2), 389–404 (2010).

    Google Scholar 

  • 49.

    McCartney, C. African affinities, part I: the surprising relationship of some of Florida’s wild orchids. Orchids 69(2), 130–139 (2010).

    Google Scholar 

  • 50.

    Mytnik-Ejsmont, J. A monograph of the subtribe Polystachyinae Schltr. (Orchidaceae) (Wydawnictwo Uniwersytetu Gdańskiego, Gdańsk, 2011).

    Google Scholar 

  • 51.

    GBIF Occurrence Download; https://doi.org/10.15468/dl.ks410t (2018).

  • 52.

    Phillips, S. J., Dudík, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. In: ICML ’04. Proceedings of the Twenty-First International Conference on Machine learning. 655–662 (ACM, New York, 2004).

  • 53.

    Phillips, S. J., Anderson, R. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).

    Google Scholar 

  • 54.

    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).

    Google Scholar 

  • 55.

    Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819 (2011).

    Google Scholar 

  • 56.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Google Scholar 

  • 57.

    WorldClim (version 1.4) www.worldclim.org

  • 58.

    Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607–611 (2010).

    Google Scholar 

  • 59.

    Chung, M. Y. et al. Comparison of genetic variation between northern and southern populations of Lilium cernuum (Liliaceae): Implications for Pleistocene refugia. PLoS ONE 13(1), e0190520. https://doi.org/10.1371/journal.pone.0190520 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Kim, S. H. et al. Phylogeography and ecological niche modeling reveal reduced genetic diversity and colonization patterns of skunk cabbage (Symplocarpus foetidus; Araceae) from Glacial Refugia in Eastern North America. Front. Plant Sci. 9, 648. https://doi.org/10.3389/fpls.2018.00648 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 61.

    Moss, R. et al. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies. (Intergovernmental Panel on Climate Change, 2008)

  • 62.

    Weyant, J. et al. Report of 2.6 Versus 2.9 Watts/m2 RCPP Evaluation Panel (IPCC Secretariat, 2009).

  • 63.

    Sohel, S. I., Akhter, S., Ullah, H., Haque, E. & Rana, P. Predicting impacts of climate change on forest tree species of Bangladesh: evidence from threatened Dysoxylum binectariferum (Roxb.) Hook.f. ex Bedd. (Meliaceae). Forest 10(1), 154–160 (2016).

    Google Scholar 

  • 64.

    Sony, R. K., Sen, S., Kumar, S., Sen, M. & Jayahari, K. M. Niche models inform the effects of climate change on the endangered Nilgiri Tahr (Nilgiritragus hylocrius) populations in the southern Western Ghats, India. Ecol. Eng. 120, 355–363 (2018).

    Google Scholar 

  • 65.

    Mason, S. J. & Graham, N. E. Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves statistical significance and interpretation. Q. J. R. Meteorol. Soc. 128, 2145–2166 (2002).

    ADS  Google Scholar 

  • 66.

    Evangelista, P. H. et al. Modelling invasion for a habitat generalist and a specialist plant species. Divers. Distrib. 14, 808–817 (2008).

    Google Scholar 

  • 67.

    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).

    Google Scholar 

  • 68.

    Hijmans, R. J., Phillips, S., Leathwick, J. & Elith J. Dismo: Species Distribution Modeling. R package version 1.1-4. https://cran.r-project.org/package=dismo (2017)

  • 69.

    Phillips, S. B., Aneja, V. P., Kang, D. & Arya, S. P. Modelling and analysis of the atmospheric nitrogen deposition in North Carolina. Int. J. Glob. Environ. Issues 6, 231–252 (2006).

    Google Scholar 

  • 70.

    Warren, D. L., Glor, R. E. & Turelli, M. Environmental nicheequivalency versus conservatism: quantitative approaches toniche evolution. Evolution 62, 2868–2883. https://doi.org/10.1111/evo.2008.62.issue-11 (2008).

    Article  PubMed  Google Scholar 

  • 71.

    Schoener, T. W. The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49, 704–726. https://doi.org/10.2307/1935534 (1968).

    Article  Google Scholar 

  • 72.

    Heibl, C. & Calenge, C. Phyloclim: integrating phylogenetics and climatic Niche modeling. R package version 0.9-4 https://cran.rproject.org/web/packages/phyloclim/phyloclim.pdf (2015).

  • 73.

    Kremen, C. et al. Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science 320, 222–226 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 74.

    Leps, J. & Smilauer, P. Multivariate Analysis of Ecological Data Using CANOCO (Cambridge University Press, Cambridge, 2003).

    Google Scholar 

  • 75.

    Peterson, A. T. et al. Ecological Niches and Geographic Distributions (MPB-49) (Princeton University Press, Princeton, 2011).

    Google Scholar 


  • Source: Ecology - nature.com

    Author Correction: Ecological pest control fortifies agricultural growth in Asia–Pacific economies

    Velcro-like food sensor detects spoilage and contamination