in

Ecological opportunity and upward prey-predator radiation cascades

  • 1.

    Ellner, S. P., Geber, M. A. & Hairston, N. G. Does rapid evolution matter? Measuring the rate of contemporary evolution and its impacts on ecological dynamics. Ecol Lett 14, 603–614 (2011).

    Article  Google Scholar 

  • 2.

    Yoder, J. B. et al. Ecological opportunity and the origin of adaptive radiations. J Evolution Biol 23, 1581–1596 (2010).

    CAS  Article  Google Scholar 

  • 3.

    Losos, J. B. Adaptive Radiation, Ecological Opportunity, and Evolutionary Determinism. Am Nat 175, 623–639 (2010).

    Article  Google Scholar 

  • 4.

    Meyer, J. R. & Kassen, R. The effects of competition and predation on diversification in a model adaptive radiation. Nature 446, 432–435 (2007).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Brodersen, J., Post, D. M. & Seehausen, O. Upward Adaptive Radiation Cascades: Predator Diversification Induced by Prey Diversification. Trends Ecol Evol 33, 59–70 (2018).

    Article  Google Scholar 

  • 6.

    Schluter, D. The ecology of adative radiations. (Oxford university press, 2000).

  • 7.

    Grant, P. R. Evolution on islands. (Oxford University Press, 1998).

  • 8.

    MacArthur, H. R. & Wilson, E. O. The theory of island biogeography. (Princeton university press, 1968).

  • 9.

    Geritz, S. A. H., Kisdi, E., Meszena, G. & Metz, J. A. J. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol Ecol 12, 35–57 (1998).

    Article  Google Scholar 

  • 10.

    Dieckmann, U. & Doebeli, M. On the origin of species by sympatric speciation. Nature 400, 354–357 (1999).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Brännström, Å., Johansson, J. & von Festenberg, N. The hitchhiker’s guide to adaptive dynamics. Games 4, 304–328 (2013).

    MathSciNet  Article  Google Scholar 

  • 12.

    Brown, J. S. & Vincent, T. L. Organization of Predator-Prey Communities as an Evolutionary Game. Evolution 46, 1269–1283 (1992).

    Article  Google Scholar 

  • 13.

    Ripa, J., Storlind, L., Lundberg, P. & Brown, J. S. Niche co-evolution in consumer-resource communities. Evol Ecol Res 11, 305–323 (2009).

    Google Scholar 

  • 14.

    Ito, H., Shimada, M. & Ikegami, T. Coevolutionary dynamics of adaptive radiation for food-web development. Popul Ecol 51, 65–81 (2009).

    Article  Google Scholar 

  • 15.

    Pontarp, M., Ripa, J. & Lundberg, P. On the origin of phylogenetic structure in competitive metacommunities. Evol Ecol Res 14, 269–284 (2012).

    Google Scholar 

  • 16.

    Pontarp, M., Ripa, J. & Lundberg, P. The biogeography of adaptive radiations and the geographic overlap of sister species. Am Nat 186, 565–581 (2015).

    Article  Google Scholar 

  • 17.

    Pontarp, M. & Wiens, J. J. The origin of species richness patterns along environmental gradients: uniting explanations based on time, diversification rate and carrying capacity. J Biogeogr 44, 722–735 (2017).

    Article  Google Scholar 

  • 18.

    Brännström, A., Loeuille, N., Loreau, M. & Dieckmann, U. Emergence and maintenance of biodiversity in an evolutionary food-web model. Theor Ecol-Neth 4, 467–478 (2011).

    Article  Google Scholar 

  • 19.

    Sauterey, B., Ward, B., Rault, J., Bowler, C. & Claessen, D. The Implications of Eco-Evolutionary Processes for the Emergence of Marine Plankton Community Biogeography. Am Nat 190, 116–130 (2017).

    Article  Google Scholar 

  • 20.

    Pontarp, M. & Petchey, O. L. Ecological opportunity and predator–prey interactions: linking eco-evolutionary processes and diversification in adaptive radiations. Proceedings of the Royal Society B: Biological Sciences 285, (2018).

  • 21.

    Loeuille, N. & Loreau, M. Evolutionary emergence of size-structured food webs. P Natl Acad Sci USA 102, 5761–5766 (2005).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Doebeli, M. & Dieckmann, U. Speciation along environmental gradients. Nature 421, 259–264 (2003).

    ADS  CAS  Article  Google Scholar 

  • 23.

    Heinz, S. K., Mazzucco, R. & Dieckmann, U. Speciation and the evolution of dispersal along environmental gradients. Evol Ecol 23, 53–70 (2009).

    Article  Google Scholar 

  • 24.

    Brose, U., Williams, R. J. & Martinez, N. D. Allometric scaling enhances stability in complex food webs. Ecol Lett 9, 1228–1236 (2006).

    Article  Google Scholar 

  • 25.

    Leyequien, E., de Boer, W. F. & Cleef, A. Influence of body size on coexistence of bird species. Ecol. Res. 22, 735–741 (2007).

    Article  Google Scholar 

  • 26.

    Yvon-Durocher, G. et al. Across ecosystem comparisons of size structure: methods, approaches and prospects. Oikos 120, 550–563 (2011).

    Article  Google Scholar 

  • 27.

    Rudolf, V. H. W. Seasonal shifts in predator body size diversity and trophic interactions in size-structured predator-prey systems. J Anim Ecol 81, 524–532 (2012).

    Article  Google Scholar 

  • 28.

    DeLong, J. P. & Vasseur, D. A. A dynamic explanation of size-density scaling in carnivores. Ecology 93, 470–476 (2012).

    Article  Google Scholar 

  • 29.

    DeLong, J. P. & Vasseur, D. A. Size-density scaling in protists and the links between consumer-resource interaction parameters. J Anim Ecol 81, 1193–1201 (2012).

    Article  Google Scholar 

  • 30.

    Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).

    Article  Google Scholar 

  • 31.

    Christiansen, F. B. & Loeschcke, V. Evolution and intraspecific exploitative competition I. One-locus theory for small additive gene effects. Theor Popul Biol 18, 297–313 (1980).

    MathSciNet  Article  Google Scholar 

  • 32.

    Brown, J. S. & Vincent, T. L. A Theory for the Evolutionary Game. Theor Popul Biol 31, 140–166 (1987).

    MathSciNet  Article  Google Scholar 

  • 33.

    Pontarp, M. & Petchey, O. L. Community trait overdispersion due to trophic interactions: concerns for assembly process inference. P Roy Soc B-Biol Sci 283, (2016).

  • 34.

    Pontarp, M., Brännström, A. & Petchey, O. L. Inferring community assembly processes from macroscopic patterns using dynamic eco-evolutionary models and Approximate Bayesian Computation (ABC). Methods Ecol Evol 10, 450–460 (2019).

    Article  Google Scholar 

  • 35.

    Muir, A. M., Hansen, M. J., Bronte, C. R. & Krueger, C. C. If Arctic charr Salvelinus alpinus is “the most diverse vertebrate’, what is the lake charr Salvelinus namaycush? Fish Fish 17, 1194–1207 (2016).

    Article  Google Scholar 

  • 36.

    Brodersen, J., Howeth, J. G. & Post, D. M. Emergence of a novel prey life history promotes contemporary sympatric diversification in a top predator. Nat Commun 6, (2015).

  • 37.

    Petchey, O. L. & Gaston, K. J. Functional diversity: back to basics and looking forward. Ecol Lett 9, 741–758 (2006).

    Article  Google Scholar 

  • 38.

    Pennekamp, F. et al. Biodiversity increases and decreases ecosystem stability. Nature 563, 109–112 (2018).

    ADS  CAS  Article  Google Scholar 

  • 39.

    Sjödin, H., Ripa, J. & Lundberg, P. Principles of niche expansion. P Roy Soc B-Biol Sci 285, (2018).

  • 40.

    Ackermann, M. & Doebeli, M. Evolution of niche width and adaptive diversification. Evolution 58, 2599–2612 (2004).

    Article  Google Scholar 

  • 41.

    Case, T. J. An illustrated guide to theoretical ecology. (Oxford University Press, Inc., 2000).

  • 42.

    Ito, H. C. & Dieckmann, U. A new mechanism for recurrent adaptive Radiations. Am Nat 170, E96–E111 (2007).

    Article  Google Scholar 

  • 43.

    Metz, J. A. J., Nisbet, R. M. & Geritz, S. A. H. How should we define fitness for general ecolgical scenarios. Trends Ecol Evol 7, 198–202 (1992).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Transition to tall evergreens

    Characterization of the phenotypic and genotypic tolerance to abiotic stresses of natural populations of Heterorhabditis bacteriophora