in

Economic and social constraints on reforestation for climate mitigation in Southeast Asia

  • 1.

    Tollefson, J. The hard truths of climate change—by the numbers. Nature 573, 324–327 (2019).

    CAS  Google Scholar 

  • 2.

    Rogelj, J. et al. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) Ch. 2 (IPCC, WMO, 2018).

  • 3.

    Egli, F. & Stunzi, A. A dynamic climate finance allocation mechanism reflecting the Paris Agreement. Environ. Res. Lett. 14, 114024 (2019).

    Google Scholar 

  • 4.

    Griscom, B. W. et al. We need both natural and energy solutions to stabilize our climate. Glob. Change Biol. 25, 1889–1890 (2019).

    Google Scholar 

  • 5.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    CAS  Google Scholar 

  • 6.

    Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2015).

    Google Scholar 

  • 7.

    Fargione, J. E. et al. Natural climate solutions for the United States. Sci. Adv. 4, eaat1869 (2018).

    Google Scholar 

  • 8.

    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    CAS  Google Scholar 

  • 9.

    Busch, J. et al. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Change 9, 463–466 (2019).

    CAS  Google Scholar 

  • 10.

    Luedeling, E. et al. Forest restoration: overlooked constraints. Science 366, 315 (2019).

    Google Scholar 

  • 11.

    Chazdon, R. & Brancalion, P. Restoring forests as a means to many ends. Science 365, 24–25 (2019).

    CAS  Google Scholar 

  • 12.

    Cohn, A. S. et al. Smallholder agriculture and climate change. Annu. Rev. Environ. Resour. 42, 347–375 (2017).

    Google Scholar 

  • 13.

    Lazos-Chavero, E. et al. Stakeholders and tropical reforestation: challenges, trade-offs, and strategies in dynamic environments. Biotropica 48, 900–914 (2016).

    Google Scholar 

  • 14.

    Barr, C. M. & Sayer, J. A. The political economy of reforestation and forest restoration in Asia–Pacific: critical issues for REDD. Biol. Conserv. 154, 9–19 (2012).

    Google Scholar 

  • 15.

    Wilson, K. A. et al. Optimal restoration: accounting for space, time and uncertainty. J. Appl. Ecol. 48, 715–725 (2011).

    Google Scholar 

  • 16.

    Kettle, C. J. Ecological considerations for using dipterocarps for restoration of lowland rainforest in Southeast Asia. Biodivers. Conserv. 19, 1137–1151 (2010).

    Google Scholar 

  • 17.

    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    CAS  Google Scholar 

  • 18.

    Estoque, R. C. et al. The future of Southeast Asia’s forests. Nat. Commun. 10, 1829 (2019).

    Google Scholar 

  • 19.

    Hengl, T. et al. Global mapping of potential natural vegetation: an assessment of machine learning algorithms for estimating land potential. PeerJ 6, e5457 (2018).

    Google Scholar 

  • 20.

    Budiharta, S. et al. Restoring degraded tropical forests for carbon and biodiversity. Environ. Res. Lett. 9, 114020 (2014).

    Google Scholar 

  • 21.

    Oakleaf, J. R. et al. Mapping global development potential for renewable energy, fossil fuels, mining and agriculture sectors. Sci. Data 6, 101 (2019).

    Google Scholar 

  • 22.

    Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).

    CAS  Google Scholar 

  • 23.

    Löfqvist, S. & Ghazoul, J. Private funding is essential to leverage forest and landscape restoration at global scales. Nat. Ecol. Evol. 3, 1612–1615 (2019).

    Google Scholar 

  • 24.

    Meyfroidt, P. & Lambin, E. F. The causes of the reforestation in Vietnam. Land Use Policy 25, 182–197 (2008).

    Google Scholar 

  • 25.

    Chazdon, R. L. & Guariguata, M. R. Natural regeneration as a tool for large-scale forest restoration in the tropics: prospects and challenges. Biotropica 48, 716–730 (2016).

    Google Scholar 

  • 26.

    Chazdon, R. L. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320, 1458–1460 (2008).

    CAS  Google Scholar 

  • 27.

    Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).

    Google Scholar 

  • 28.

    Sheil, D. et al. Forest restoration: transformative trees. Science 366, 316–317 (2019).

    Google Scholar 

  • 29.

    Delzeit, R. et al. Forest restoration: expanding agriculture. Science 366, 316–317 (2019).

    Google Scholar 

  • 30.

    Strassburg, B. B. N. et al. Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nat. Ecol. Evol. 3, 62–70 (2019).

    Google Scholar 

  • 31.

    National Inventory Submissions 2019 (UNFCCC, 2019); https://unfccc.int/process-and-meetings/transparency-and-reporting/reporting-and-review-under-the-convention/greenhouse-gas-inventories-annex-i-parties/national-inventory-submissions-2019

  • 32.

    Crouzeilles, R. et al. Achieving cost-effective landscape-scale forest restoration through targeted natural regeneration. Conserv. Lett. 13, e12709 (2020).

    Google Scholar 

  • 33.

    Financing Emission Reductions for the Future: State of Voluntary Carbon Markets 2019 (Forest Trends’ Ecosystem Marketplace, 2019).

  • 34.

    Tobón, W. et al. Restoration planning to guide Aichi targets in a megadiverse country. Conserv. Biol. 31, 1086–1097 (2017).

    Google Scholar 

  • 35.

    Griggs, D. et al. Sustainable development goals for people and planet. Nature 495, 305–307 (2013).

    Google Scholar 

  • 36.

    Miettinen, J. & Liew, S. C. Degradation and development of peatlands in Peninsular Malaysia and in the islands of Sumatra and Borneo since 1990. Land Degrad. Dev. 21, 285–296 (2010).

    Google Scholar 

  • 37.

    Miettinen, J., Shi, C. & Liew, S. C. Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Glob. Ecol. Conserv. 6, 67–78 (2016).

    Google Scholar 

  • 38.

    Bunting, P. et al. The global mangrove watch—a new 2010 global baseline of mangrove extent. Remote Sens. 10, 1669 (2018).

    Google Scholar 

  • 39.

    Land Cover CCI Product User Guide Version 2 (ESA, 2017); http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf

  • 40.

    Graham, V., Laurance, S. G., Grech, A. & Venter, O. Spatially explicit estimates of forest carbon emissions, mitigation costs and REDD+ opportunities in Indonesia. Environ. Res. Lett. 12, 044017 (2017).

    Google Scholar 

  • 41.

    Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).

    Google Scholar 

  • 42.

    Avitabile, V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Change Biol. 22, 1406–1420 (2016).

    Google Scholar 

  • 43.

    Worthington, T. & Spalding, M. Mangrove Restoration Potential: A Global Map Highlighting a Critical Opportunity (Univ. Cambridge, 2018); https://doi.org/10.17863/CAM.39153

  • 44.

    Miettinen, J., Shi, C. & Liew, S. C. Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob. Change Biol. 17, 2261–2270 (2011).

    Google Scholar 

  • 45.

    Miettinen, J., Shi, C. & Liew, S. C. 2015 Land cover map of Southeast Asia at 250 m spatial resolution. Remote Sens. Lett. 7, 701–710 (2016).

    Google Scholar 

  • 46.

    Friedlingstein, P., Allen, M., Canadell, J. G., Peters, G. P. & Seneviratne, S. I. Comment on ‘The global tree restoration potential’. Science 366, eaay8060 (2019).

    Google Scholar 

  • 47.

    Veldman, J. W. et al. Comment on ‘The global tree restoration potential’. Science 366, eaay7976 (2019).

    Google Scholar 

  • 48.

    Buendia, C. et al. (eds) 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 4: Agriculture, Forestry and Other Land Use (IPCC, 2019).

  • 49.

    Fritz, S. et al. Mapping global cropland and field size. Glob. Change Biol. 21, 1980–1992 (2015).

    Google Scholar 

  • 50.

    Requena Suarez, D. et al. Estimating aboveground net biomass change for tropical and subtropical forests: Refinement of IPCC default rates using forest plot data. Glob. Change Biol. 25, 3609–3624 (2019).

    Google Scholar 

  • 51.

    Cameron, C., Hutley, L. B., Friess, D. A. & Brown, B. High greenhouse gas emissions mitigation benefits from mangrove rehabilitation in Sulawesi, Indonesia. Ecosyst. Serv. 40, 101035 (2019).

    Google Scholar 

  • 52.

    World Development Report 2013: Jobs (World Bank, 2012).

  • 53.

    The World Bank Annual Report 2018 (World Bank, 2018).

  • 54.

    FAOSTAT (FAO, 2017); http://www.fao.org/faostat/en/#data

  • 55.

    Producer Prices-Annua (FAO, 2017); http://www.fao.org/faostat/en/#data/PP

  • 56.

    Global Agro-Ecological Zones: Suitability and Potential Yield — Agro-Climatic Yield (International Institute for Applied Systems Analysis, 2015); http://gaez.fao.org/Main.html#

  • 57.

    Employment by Sex and Age—ILO Modelled Estimates (International Labour Organization, 2014); https://ilostat.ilo.org/data

  • 58.

    World Development Indicators (The World Bank, 2018); http://data.worldbank.org/data-catalog/world-development-indicators

  • 59.

    Naylor, R. L., Higgins, M. M., Edwards, R. B. & Falcon, W. P. Decentralization and the environment: assessing smallholder oil palm development in Indonesia. Ambio 48, 1195–1208 (2019).

    Google Scholar 

  • 60.

    Hewson, J., Crema, S. C., González-Roglich, M., Tabor, K. & Harvey, C. A. New 1 km resolution datasets of global and regional risks of tree cover loss. Land 8, 14 (2019).

    Google Scholar 

  • 61.

    The World Database on Protected Areas (WDPA) (UNEP-WCMC and IUCN, 2016); http://protectedplanet.net

  • 62.

    Weiss, D. J. et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553, 333–336 (2018).

    CAS  Google Scholar 

  • 63.

    Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).

    Google Scholar 

  • 64.

    Page, S. E. et al. Review of Peat Surface Greenhouse Gas Emissions from Oil Palm Plantations in Southeast Asia White Paper No. 15 (International Council on Clean Transportation, 2011).

  • 65.

    Reijnders, L. & Huijbregts, M. A. J. Palm oil and the emission of carbon-based greenhouse gases. J. Clean. Prod. 16, 477–482 (2008).

    Google Scholar 

  • 66.

    Saragi-Sasmito, M. F., Murdiyarso, D., June, T. & Sasmito, S. D. Carbon stocks, emissions, and aboveground productivity in restored secondary tropical peat swamp forests. Mitig. Adapt. Strateg. Glob. Change 24, 521–533 (2019).

    Google Scholar 

  • 67.

    R v.3.6.0 (R Foundation for Statistical Computing, 2019).

  • 68.

    Hijmans, R. J. et al. raster: Geographic data analysis and modeling. R package v.2.5-8.

  • 69.

    QGIS Geographic Information System Version 2.14 (Open Source Geospatial Foundation Project, 2019); http://qgis.org


  • Source: Ecology - nature.com

    Environmentally induced phenotypic plasticity and DNA methylation changes in a wild potato growing in two contrasting Andean experimental gardens

    Biodiversity scientists must fight the creeping rise of extinction denial