CO2 now. Earth’s CO Home Page. https://www.co2.earth/ (2020).
Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science333, 988–993. https://doi.org/10.1126/science.1201609 (2011).
Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage.259, 660–684. https://doi.org/10.1016/j.foreco.2009.09.001 (2010).
Scharlemann, J. P., Tanner, E. V., Hiederer, R. & Kapos, V. Global soil carbon, understanding and managing the largest terrestrial carbon pool. Carbon Manage.5, 81–91. https://doi.org/10.4155/cmt.13.77 (2014).
Lal, R. Forest soils and carbon sequestration. For. Ecol. Manage.220, 242–258. https://doi.org/10.1016/j.foreco.2005.08.015 (2005).
Slik, J. W. F. et al. An estimate of the number of tropical tree species. Proc. Natl. Acad. Sci.112, E4628–E4629. https://doi.org/10.1073/pnas.1423147112 (2015).
Sullivan, M. J. et al. Diversity and carbon storage across the tropical forest biome. Sci. Rep.7, 39102. https://doi.org/10.1038/srep39102 (2017).
Poorter, L. et al. Diversity enhances carbon storage in tropical forests. Glob. Ecol. Biogeogr.24, 1314–1328. https://doi.org/10.1111/geb.12364 (2015).
Malhi, Y. A., Baldocchi, D. D. & Jarvis, P. G. The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ.22, 715–740. https://doi.org/10.1046/j.1365-3040.1999.00453.x (1999).
Jhariya, M. K. Vegetation ecology and carbon sequestration potential of shrubs in tropics of Chhattisgarh, India. Environ. Monit. Assess.189, 518. https://doi.org/10.1007/s10661-017-6246-2 (2017).
Mattsson, E., Ostwald, M., Wallin, G. & Nissanka, S. P. Heterogeneity and assessment uncertainties in forest characteristics and biomass carbon stocks: Important considerations for climate mitigation policies. Land Use Policy59, 84–94. https://doi.org/10.1016/j.landusepol.2016.08.026 (2016).
Brown, S. & Lugo, A. E. Biomass of tropical forests, a new estimate based on forest volumes. Science223, 1290–1293. https://doi.org/10.1126/science.223.4642.1290 (1984).
Dar, J. A. & Sundarapandian, S. Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya, India. Environ. Monit. Assess.187, 55. https://doi.org/10.1007/s10661-015-4299-7 (2015).
Dar, J. A., Rather, M. Y., Subashree, K., Sundarapandian, S. & Khan, M. L. Distribution patterns of tree, understorey, and detritus biomass in coniferous and broad-leaved forests of Western Himalaya, India. J. Sust. For.36, 787–805. https://doi.org/10.1080/10549811.2017.1363055 (2017).
Gandhi, D. S. & Sundarapandian, S. Large-scale carbon stock assessment of woody vegetation in tropical dry deciduous forest of Sathanur reserve forest, Eastern Ghats. India. Environ. Monit. Assess.189, 187. https://doi.org/10.1007/s10661-017-5899-1 (2017).
Ruiz-Benito, P. et al. Diversity increases carbon storage and tree productivity in Spanish forests. Glob. Ecol. Biogeogr.23, 311–322. https://doi.org/10.1111/geb.12126 (2014).
Huang, Y. et al. Positive effects of tree species diversity on litterfall quantity and quality along a secondary successional chronosequence in a subtropical forest. J. Plant Ecol.10, 28–35. https://doi.org/10.1093/jpe/rtw115 (2017).
Gamfeldt, L. et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun.4, 1340. https://doi.org/10.1038/ncomms2328 (2013).
Chisholm, R. A. et al. Scale-dependent relationships between tree species richness and ecosystem function in forests. J. Ecol.101, 1214–1224. https://doi.org/10.1111/1365-2745.12132 (2013).
Ferreira, J. et al. Carbon-focused conservation may fail to protect the most biodiverse tropical forests. Nat. Clim. Chang. https://doi.org/10.1038/s41558-018-0225-7 (2018).
Sullivan, T. P., Sullivan, D. S. & Lindgren, P. M. F. Influence of variable retention harvests on forest ecosystems. I. Diversity of stand structure. J. Appl. Ecol.38, 1221–1233. https://doi.org/10.1046/j.0021-8901.2001.00671.x (2001).
van der Sande, M. T. et al. Biodiversity in species, traits, and structure determines carbon stocks and uptake in tropical forests. Biotropica49, 593–603. https://doi.org/10.1111/btp.12453 (2017).
Bastin, J. F. et al. The global tree restoration potential. Science365, 76–79. https://doi.org/10.1126/science.aax0848 (2019).
Chazdon, R. & Brancalion, P. Restoring forests as a means to many ends. Science365, 24–25. https://doi.org/10.1126/science.aax9539 (2019).
Sierra, C. A. et al. Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. For. Ecol. Manage.243, 299–309. https://doi.org/10.1016/j.foreco.2007.03.026 (2007).
Vayreda, J. et al. Spatial patterns and predictors of forest carbon stocks in Western Mediterranean. Ecosystems15, 1258–1270. https://doi.org/10.1007/s10021-012-9582-7 (2012).
Behera, S. K. et al. Aboveground biomass and carbon stock assessment in Indian tropical deciduous forest and relationship with stand structural attributes. Ecol. Eng.99, 513–524. https://doi.org/10.1016/j.ecoleng.2016.11.046 (2017).
Poorter, L. et al. Biodiversity and climate determine the functioning of Neotropical forests. Glob. Ecol. Biogeogr.26, 1423–1434. https://doi.org/10.1111/geb.12668 (2017).
Liu, X. et al. Tree species richness increases ecosystem carbon storage in subtropical forests. Proc. R. Soc. B Biol. Sci.285, 20181240. https://doi.org/10.1098/rspb.2018.1240 (2018).
Amara, E. et al. Relationship between carbon stocks and tree species diversity in a humid Guinean Savanna landscape in northern Sierra Leone. South For. https://doi.org/10.2989/20702620.2018.1555947 (2019).
Li, Y. et al. Drivers of tree carbon storage in subtropical forests. Sci. Total Environ.654, 684–693. https://doi.org/10.1016/j.scitotenv.2018.11.024 (2019).
Muntean, M. et al.Fossil CO2emissions of all world countries—2018 report emissions of all world countries—2018 report (Publications Office of the European Union, Luxembourg, 2018). https://doi.org/10.2760/30158
India State of Forest Report 2019. Forest Survey of India, Edition 16, Ministry of Environment, Forest & Climate Change, Government of India. https://www.fsi.nic.in/forest-report-2019 (2019).
Puyravaud, J. P., Davidar, P. & Laurance, W. F. Cryptic destruction of India’s native forests. Cons. Lett.3, 390–394. https://doi.org/10.1111/j.1755-263X.2010.00141.x (2010).
Seen, D. L. et al. Soil carbon stocks, deforestation and land-cover changes in the Western Ghats biodiversity hotspot (India). Glob. Change Biol.16, 1777–1792. https://doi.org/10.1111/j.1365-2486.2009.02127.x (2010).
Osuri, A. M., Kumar, V. S. & Sankaran, M. Altered stand structure and tree allometry reduce carbon storage in evergreen forest fragments in India’s Western Ghats. For. Ecol. Manage.329, 375–383. https://doi.org/10.1016/j.foreco.2014.01.039 (2014).
Padmakumar, B. et al. Tree biomass and carbon density estimation in the tropical dry forest of Southern Western Ghats, India. iForest11, 534–541. https://doi.org/10.3832/ifor2190-011 (2018).
Lewis, S. L. et al. Above-ground biomass and structure of 260 African tropical forests. Philos. Trans. R. Soc. B Biol. Sci.368, 20120295–20120295. https://doi.org/10.1098/rstb.2012.0295 (2013).
Slik, J. W. F. et al. Environmental correlates of tree biomass, basal area, wood specific gravity and stem density gradients in Borneo’s tropical forests. Glob. Ecol. Biogeogr.19, 50–60. https://doi.org/10.1111/j.1466-8238.2009.00489.x (2010).
Baker, T. R. et al. Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob. Change Biol.10, 545–562. https://doi.org/10.1111/j.1365-2486.2004.00751.x (2004).
Haripriya, G. S. Estimates of biomass in Indian forests. Biomass Bioenergy19, 245–258. https://doi.org/10.1016/S0961-9534(00)00040-4 (2000).
Zhao, J. et al. Patterns of biomass and carbon distribution across a chronosequence of Chinese pine (Pinus tabulaeformis) forests. PLoS ONE9, e94966. https://doi.org/10.1371/journal.pone.0094966 (2014).
Cairns, M. A., Olmsted, I., Granados, J. & Argaez, J. Composition and aboveground tree biomass of a dry semi-evergreen forest on Mexico’s Yucatan Peninsula. For. Ecol. Manage.186, 125–132. https://doi.org/10.1016/S0378-1127(03)00229-9 (2003).
Zimudzi, C. & Chapano, C. Diversity, population structure, and above ground biomass in woody species on Ngomakurira Mountain, Domboshawa, Zimbabwe. Int. J. Biodivers. https://doi.org/10.1155/2016/4909158 (2016).
Abere, F., Belete, Y., Kefalew, A. & Soromessa, T. Carbon stock of Banja forest in Banja district, Amhara region, Ethiopia: An implication for climate change mitigation. J. Sust. For.36, 604–622. https://doi.org/10.1080/10549811.2017.1332646 (2017).
Sun, W. & Liu, X. Review on carbon storage estimation of forest ecosystem and applications in China. For. Ecosyst.7, 4. https://doi.org/10.1186/s40663-019-0210-2 (2020).
Worldclim. Global climate and weather data. https://www.worldclim.org/ (2019).
Alvarez-Davila, E. et al. Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature. PLoS ONE12, e0171072. https://doi.org/10.1371/journal.pone.0171072 (2017).
Solomon, N., Pabi, O., Annang, T., Asante, I. K. & Birhane, E. The effects of land cover change on carbon stock dynamics in a dry Afromontane forest in northern Ethiopia. Carbon Balance Manage.13, 14. https://doi.org/10.1186/s13021-018-0103-7 (2018).
McNicol, I. M., Ryan, C. M., Dexter, K. G., Ball, S. M. J. & Williams, M. Aboveground carbon storage and its links to stand structure, tree diversity and floristic composition in South-Eastern Tanzania. Ecosystems21, 740–754. https://doi.org/10.1007/s10021-017-0180-6 (2018).
Dimobe, K. et al. Predicting the Potential Impact of Climate Change on Carbon Stock in Semi-Arid West African Savannas. Land7, 124. https://doi.org/10.3390/land7040124 (2018).
Raha, D. et al. Variation in tree biomass and carbon stocks in three tropical dry deciduous forest types of Madhya Pradesh, India. Carbon Manage.11, 109–120. https://doi.org/10.1080/17583004.2020.1712181 (2020).
Lutz, J. A. et al. Global importance of large-diameter trees. Glob. Ecol. Biogeogr.27, 849–864. https://doi.org/10.1111/geb.12747 (2018).
Duran, S. M. & Gianoli, E. Carbon stocks in tropical forests decrease with liana diversity. Biol. Lett.9, 20130301. https://doi.org/10.1098/rsbl.2013.0301 (2013).
Brown, S., Iverson, L. R., Prasad, A. & Liu, D. Geographical distributions of carbon in biomass and soils of tropical Asian forests. Geocarto. Int.8, 45–59. https://doi.org/10.1080/10106049309354429 (1993).
Tang, J. W., Yin, J. X., Qi, J. F., Jepsen, M. R. & Lü, X. T. Ecosystem carbon storage of tropical forests over limestone in Xishuangbanna, SW China. J. Trop. For. Sci. 24, 399–407 (2012).
Slik, J. W. F. et al. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob. Ecol. Biogeogr.22, 1261–1271. https://doi.org/10.1111/geb.12092 (2013).
DeWalt, S. J. et al. Biogeographical patterns of liana abundance and diversity. In The Ecology of Lianas (eds Schnitzer, S. A. et al.) 131–146 (Wiley-Blackwell Publishing, Oxford, 2015).
Yuen, J. Q., Fung, T. & Ziegler, A. D. Carbon stocks in bamboo ecosystems worldwide: Estimates and uncertainties. For. Ecol. Manage.393, 113–138. https://doi.org/10.1016/j.foreco.2017.01.017 (2017).
Goodman, R. C. et al. Amazon palm biomass and allometry. For. Ecol. Manage.310, 994–1004. https://doi.org/10.1016/j.foreco.2013.09.045 (2013).
Petrokofsky, G. et al. Comparison of methods for measuring and assessing carbon stocks and carbon stock changes in terrestrial carbon pools. How do the accuracy and precision of current methods compare? A systematic review protocol. Environ. Evid.1, 6. https://doi.org/10.1186/2047-2382-1-6 (2012).
Brown, S. & Lugo, A. E. The storage and production of organic matter in tropical forests and their role in the global carbon cycle. Biotropica14, 161–187. https://doi.org/10.2307/2388024 (1982).
Pregitzer, K. S. & Euskirchen, E. S. Carbon cycling and storage in world forests: biome patterns related to forest age. Glob. Change Biol.10, 2052–2077. https://doi.org/10.1111/j.1365-2486.2004.00866.x (2004).
Pfeifer, M. et al. Deadwood biomass: An underestimated carbon stock in degraded tropical forests?. Environ. Res. Lett.10, 044019. https://doi.org/10.1088/1748-9326/10/4/044019 (2015).
Tran, D. B. & Dargusch, P. Melaleuca forests in Australia have globally significant carbon stocks. For. Ecol. Manage.375, 230–237. https://doi.org/10.1016/j.foreco.2016.05.028 (2016).
Lü, X. T., Yin, J. X., Jepsen, M. R. & Tang, J. W. Ecosystem carbon storage and partitioning in a tropical seasonal forest in Southwestern China. For. Ecol. Manage.260, 1798–1803. https://doi.org/10.1016/j.foreco.2010.08.024 (2010).
Yue, J. W. et al. Allocation pattern and accumulation potential of carbon stock in natural spruce forests in northwest China. Peer J.6, e4859. https://doi.org/10.7717/peerj.4859 (2018).
Palm, C. A., Houghton, R. A., Melillo, J. M. & Skole, D. L. Atmospheric carbon dioxide from deforestation in southeast Asia. Biotropica18, 177–188. https://doi.org/10.2307/2388482 (1986).
Sreekanth, N. P., Prabha, S. V., Padmakumar, B. & Thomas, A. P. Soil carbon alterations of selected forest types as an environmental feedback to climate change. Int. J. Environ. Sci.3, 1516–1530. https://doi.org/10.6088/ijes.2013030500022 (2013).
Shukla, G., Pala, N. A. & Chakravarty, S. Quantification of organic carbon and primary nutrients in litter and soil in a foothill forest plantation of eastern Himalaya. J. For. Res.28, 1195–1202. https://doi.org/10.1007/s11676-017-0394-7 (2017).
Ma, L., Shen, C., Lou, D., Fu, S. & Guan, D. Patterns of ecosystem carbon density in edge-affected fengshui forests. Ecol. Eng.107, 216–223. https://doi.org/10.1016/j.ecoleng.2017.07.037 (2017).
Dar, J. A. & Sundarapandian, S. Altitudinal variation of soil organic carbon stocks in temperate forests of Kashmir Himalayas, India. Environ. Monit. Assess.187, 11. https://doi.org/10.1007/s10661-014-4204-9 (2015).
Ngo, K. M. et al. Carbon stocks in primary and secondary tropical forests in Singapore. For. Ecol. Manage.296, 81–89. https://doi.org/10.1016/j.foreco.2013.02.004 (2013).
Bazezew, M. N., Soromessa, T. & Bayable, E. Carbon stock in Adaba-Dodola community forest of Danaba District, West-Arsi zone of Oromia Region, Ethiopia: An implication for climate change mitigation. J. Ecol. Nat. Environ.7, 14–22. https://doi.org/10.5897/jene2014.0493 (2015).
Skutsch, M., McCall, K. & Lovett, J. Carbon emissions: Dry forests may be easier to manage. Nature7273, 462. https://doi.org/10.1038/462567b (2009).
Corona-Núñez, R. O., Campo, J. & Williams, M. Aboveground carbon storage in tropical dry forest plots in Oaxaca, Mexico. For. Ecol. Manage.409, 202–214. https://doi.org/10.1016/j.foreco.2017.11.014 (2018).
Miles, L. et al. A global overview of the conservation status of tropical dry forests. J. Biogeogr.33, 491–505. https://doi.org/10.1111/j.1365-2699.2005.01424.x (2006).
Fotis, A. T. et al. Above-ground biomass is driven by mass-ratio effects and stand structural attributes in a temperate deciduous forest. J. Ecol.106, 561–570. https://doi.org/10.1111/1365-2745.12847 (2017).
Morin, X. Species richness promotes canopy packing: A promising step towards a better understanding of the mechanisms driving the diversity effects on forest functioning. Funct. Ecol.29, 993–994. https://doi.org/10.1111/1365-2435.12473 (2015).
Labriere, N. et al. Spatial congruence between carbon and biodiversity across forest landscapes of northern Borneo. Glob. Ecol. Conserv.6, 105–120. https://doi.org/10.1016/j.gecco.2016.01.005 (2016).
Jucker, T., Bouriaud, O. & Coomes, D. A. Crown plasticity enables trees to optimize canopy packing in mixed species forests. Funct. Ecol.29, 1078–1086. https://doi.org/10.1111/1365-2435.12428 (2015).
Toledo, M. et al. Distribution patterns of tropical woody species in response to climatic and edaphic gradients. J. Ecol.100, 253–263. https://doi.org/10.1111/j.1365-2745.2011.01890.x (2012).
Lugo, A. E. & Brown, S. Tropical forests as sinks of atmospheric carbon. For. Ecol. Manage.54, 239–255. https://doi.org/10.1016/0378-1127(92)90016-3 (1992).
van der Heijden, G. M. et al. Liana impacts on carbon cycling, storage and sequestration in tropical forests. Biotropica45, 682–692. https://doi.org/10.1111/btp.12060 (2013).
Nath, A. J., Lal, R. & Das, A. K. Managing woody bamboos for carbon farming and carbon trading. Glob. Ecol. Conserv.3, 654–663. https://doi.org/10.1016/j.gecco.2015.03.002 (2015).
Ali, A. et al. Big-sized trees overrule remaining trees’ attributes and species richness as determinants of aboveground biomass in tropical forests. Glob. Change Biol.25, 2810–2824. https://doi.org/10.1111/gcb.14707 (2019).
Bastin, J. F. et al. Pan-tropical prediction of forest structure from the largest trees. Glob. Ecol. Biogeogr.27, 1366–1383. https://doi.org/10.1111/geb.12803 (2018).
Allen, K. et al. Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes?. Environ. Res. Lett.12, 023001. https://doi.org/10.1088/1748-9326/aa5968 (2017).
ENVIS Centre: Tamil Nadu State of Environment and Related Issues. http://tnenvis.nic.in/files/KANYAKUMARI%20%20.pdf (2018).
Roy, P. S. et al.Biodiversity Characterization at Landscape Level: National Assessment (Indian Institute of Remote Sensing, Dehradun, 2012).
Sundarapandian, S. M. & Swamy, P. S. Forest ecosystem structure and composition along an altitudinal gradient in the Western Ghats, South India. J. Trop. For. Sci.12, 104–123 (2000).
Zanne, A. E. et al. Global wood density database. https://hdl.handle.net/10255/dryad.235 (2009).
Alvarez, E. et al. Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. For. Ecol. Manage.267, 297–308. https://doi.org/10.1016/j.foreco.2011.12.013 (2012).
Phillips, J. et al. Live aboveground carbon stocks in natural forests of Colombia. For. Ecol. Manage.374, 119–128. https://doi.org/10.1016/j.foreco.2016.05.009 (2016).
Kaushal, R. et al. Predictive models for biomass and carbon stock estimation in male bamboo (Dendrocalamus strictus L.) in Doon valley, India. Acta Ecol. Sin.36, 469–476. https://doi.org/10.1016/j.chnaes.2016.07.003 (2016).
Chaturvedi, R. K., Raghubanshi, A. S. & Singh, J. S. Biomass estimation of dry tropical woody species at juvenile stage. Sci. World J. https://doi.org/10.1100/2012/790219 (2012).
Schnitzer, S. A., DeWalt, S. J. & Chave, J. Censusing and measuring lianas, a quantitative comparison of the common methods. Biotropica38, 581–591. https://doi.org/10.1111/j.1744-7429.2006.00187.x (2006).
Cairns, M. A., Brown, S., Helmer, E. H. & Baumgardner, G. A. Root biomass allocation in the world’s upland forests. Oecologia111, 1–11. https://doi.org/10.1007/s004420050201 (1997).
Ravindranath, N. H. & Ostwald, M. Carbon Inventory Methods, Handbook for Greenhouse Gas Inventory, Carbon Mitigation and Roundwood Production Projects (Springer Science & Business Media, New York, 2008).
Junior, P. et al. Carbon stocks in a tropical dry forest in Brazil. Rev. Cienc. Agron.47, 32–40. https://doi.org/10.5935/1806-6690.20160004 (2016).
Coleman, D. C. Soil carbon balance in a successional grassland. Oikos24, 195–199. https://doi.org/10.2307/3543875 (1973).
Walkley, A. & Black, I. A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci.37, 29–38 (1934).
Pearson, T., Walker, S. & Brown, S. Sourcebook for land use, land-use change and forestry projects 29 (Winrock International and the BioCarbon Fund of the World Bank, 2005).
Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. the sp Package. R News5 (2005).
Hijmans, R. J. Raster: Geographic Data Analysis and Modeling. R package version 3.1-5 (2020).
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2019).
Muthuramkumar, S. et al. Plant community structure in tropical rain forest fragments of the Western Ghats, India. Biotropica38, 143–160 (2006).
IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp. (2011).
Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron.4 (2001).
Source: Ecology - nature.com