International Waterbird Census (IWC) data suggest 309,000 Scaup were wintering in North-West Europe in 1988–1991, compared with 192,300 in 2015–2018, indicating that the number of Scaup in this flyway has declined by 38.1% over 31 years (equivalent to a 30.3% decline over three generations, given a Scaup generation length of 8.2 years). Such a rate of decrease qualifies this population as vulnerable (VU) according to criterion A2(c) of the International Union for Conservation of Nature24. Thus, our results confirm the recent attribution of Scaup as a VU on the European Red List18. We suggest that the 1% threshold for the North-West Europe population of the Scaup should be revised to 1900.
In addition to the overall decline in abundance, we also show that changes in winter temperature on the eastern and northern edges of the wintering range potentially explain the observed dramatic shift in winter distribution closer to the breeding grounds. Climate change appears to have opened up more wintering sites to Scaup, especially in the more northern and eastern areas where reductions in winter ice cover have made previous staging sites increasingly accessible in winter. This might be expected to have a positive effect on the population, given that Scaup have more potential wintering sites to choose between and that they face a diminished risk from mass starvation because of the reduced probability of unexpected ice cover of potential feeding areas25. However, the ultimate causes of shifts in wintering distribution remain unknown and could equally relate to deterioration of food quality in southern and western wintering grounds. At Lake IJsselmeer, the annual changes in the large numbers of wintering Scaup there in the 1980s and 1990s were explained by fluctuations in the abundance of their main prey, Zebra Mussel Dreissena polymorpha26. The decline in Zebra Mussels in the IJsselmeer lake and its replacement by Quagga Mussels Dreissena rostriformis bugensis27 resulted in a deterioration in the quality of food resources at the site. These are likely contributory reasons to explain the shift in the centre of gravity of the Scaup wintering grounds to Poland and eastern Germany, although we lack data to determine the magnitude of this effect (Fig. 4, Unit#3). This area now constitutes the most important wintering area for this population, although the detection of Quagga Mussels in this region in 201428 represents a potential threat to the quality of this important wintering ground.
Assuming that some of the birds remain to winter along the migration route on sites formerly only used as stopovers, we can retrospectively infer the migration route of the Scaup population breeding in northern Russia and Fennoscandia (Fig. 1). It would appear that after birds reach the Baltic, they stop in Estonia before traversing the Baltic south-west to Gotland, migrating along the southern coast of Sweden and onwards to the main wintering area in Danish, German and Polish Baltic waters (Unit#3). Some Scaup continue west to reach Unit#2 in the Netherlands, and small numbers continue to reach France and the UK. The small population breeding in Iceland likely winter exclusively in the UK and Ireland, where fewer of the Russian/Fennoscandia population reach in recent winters. The Iceland breeding birds likely constitute a separate biogeographic population, with little contact with the main one discussed here (Fig. 1). Assuming the continuing effects of global warming, we can predict further separation of the two sub-populations and that Unit#4 (Fig. 4), the coast of Gotland and the islands and bays in Estonia will most likely play an increasingly important future role as winter quarters for this species. This is likely to be the case at other sites within eastern Baltic where this species can find suitable habitats.
Our historical analysis has shown that after a period of most rapid decline during 1988–2003, this population could be interpreted as remaining stable during 2003–2018 (Fig. 2). We suspect that this may be partly the result of the significant decrease in the Scaup bycatch in the Netherlands29,30,31. The added mortality from fisheries bycatch represents one of the most important threats to the relatively long-lived Scaup32. Evidence showed that drowning mortality was extremely high between 1985 and 1994, when an estimated average of 17,672 birds died annually in fishing gear (6% of the total population of the time), but this has declined since the 2000s32. Of all Scaup from this flyway population that drowned in fishing nets in years 1978–1990, up to 65% died at the most important wintering site at the time—the Dutch IJsselmeer32. However, our highly uneven knowledge of the extent of the Scaup bycatch throughout its winter range should be taken into account here. Exceptionally detailed estimates from IJsselmeer during the earlier period14 contrasts our lack of data or poor estimates from elsewhere, which may result in a bias that implies a greater importance for Scaup bycatch at the IJsselmeer for the population than was actually the case. Current estimates of bycatch levels throughout the flyway suggest that Scaup death in fishing nets has decreased, amounting to c.4000 individuals yearly, partly explained by the substantial decrease in the Dutch bycatch32.
The second highly important threat to Scaup, perhaps as important as the bycatch, is the deterioration of their food resources. Detailed energy budget studies on Lake IJsselmeer14 suggested that foraging Scaup there were operating on the margins of energetic profitability and the limited number of important wintering sites elsewhere suggest that alternative sites are really scarce, implying that food availability at core wintering sites could potentially affect winter survival.
The specialist habitat selection of the Scaup restricts it to a narrow range of habitats during the wintering period where it aggregates in large concentrations, a factor which causes the entire wintering population to concentrate in relatively few locations. Potentially, this makes them more vulnerable at the population level than most other, more dispersed diving duck species. During the January 2015 count, 91% of counted birds were present at 31 locations in five countries (Denmark, Germany, the Netherlands, Poland and Sweden). The four most important locations supported over two-thirds of the total wintering numbers: namely IJsselmeer in the Netherlands, Barther Bodden and Greifswalder Bodden in Germany and Odra river estuary in Poland (Fig. 4). Taken together, these areas have consistently been the most important wintering areas for Scaup over the last 30 years3,14,20, with two thirds of the flyway population during winter concentrated within 5300 km2 (2000 km2 in the Netherlands and 3300 km2 in Poland/Germany).
Wintering areas in Germany and Poland also act as stopover sites, so much larger numbers are counted there in autumn and spring migration, with up to 100,000 individuals on the Szczecin Lagoon (c.470 km29). Similarly, in Estonia, where a few hundred birds winter (Fig. 1), numbers may exceed 100,000 individuals in spring33. Therefore, cohesive planning for the effective conservation of the species, requires adequate protection at both the most important wintering sites (analysed in this article) and stopover sites along the entire migration route. During spring migration, extremely large Scaup concentrations can occur in these important sites, which provide for other biological functions such a communal courtship, displaying, pair-bonding etc.32. Given that Scaup are among the most vulnerable of diving ducks to bycatch34 (constituting more than 50% of diving birds drowned in fishing nets in the Polish Odra Estuary35) potentially high mortality during the prelude to the breeding season is likely to have severe adverse effects on the entire population. It is important to remember that this site can simultaneously support up to 75% of the total population9 and intensive fishing takes place here with gillnets35—the method of fishing recognised as the most dangerous for drowning diving birds in the Baltic Sea6.
Other environmental pressures on Scaup are no less serious, but currently less well quantified. Many important wintering areas are situated in estuaries of large rivers that invariably host major sea ports, where large vessels cause disturbance and pollution. Maintenance of shipping channels requires dredging (as in the case of the channel leading to the port of Amsterdam on IJsselmeer in the Netherlands and that serving the port of Szczecin on the Szczecin Lagoon in Poland). Dredging of shallow marine and brackish substrates can disrupt sediment horizons, mobilising suspended material, creating turbidity and disrupting the food resource and the ability of Scaup to forage for their prey. The proximity to human settlements also makes these shallow marine waters attractive to the increasing practice of water sports, kite- and wind-surfing, boating and recreational fishing from boats, which although not a source of direct mortality, contributes to disturbance and displacement of Scaup from favoured areas36,37.
SPAs and effectiveness of protection
The long-term conservation aim for a decreasing qualifying species, in accordance with European Union (EU) law (Birds Directive—Council Directive 2009/147/EC), should be to recover them to former level of abundance. To achieve this aim, SPAs should be designated in sites where 1% or more of the biogeographic population regularly occurs. In the case of Scaup, all of such areas are protected in the form of SPA (Table 2). Subsequently, such a SPAs should have a Management Plan (MP) defining the conservation objectives within each site, updated every 6 years. Of the three most important Scaup SPAs in Europe, only the IJsselmeer (NL9803028, Unit#2, Core wintering area, Fig. 4) has a MP for 2013–201738, which described the long term decline (since 1994) in wintering numbers of Scaup in the IJsselmeer and identified the greatest threats for Scaup as declining food resources and disturbance by developing water sports. Although bycatch was conspicuously not listed as a threat, the MP documents previous measures, taken to reduce fishing effort, had resulted from the implementation of another EU Directive—the Water Framework Directive (WFD, Directive 2000/60/EC). The WFD committed EU Member States to achieve good qualitative and quantitative status of all water bodies by 201538. Conservation measures carried out on Lake IJsselmeer over the last 75 years aimed to maintain sustainable fishing did not bring about the intended results on fish stock39. However, they may have had a positive effect on reducing bycatch of Scaup from 11,500 killed annually during 1978–199032 to insignificant numbers in the years 2011–201231, which may have contributed to the slowing in the rate of population decline at this time. In the most important wintering area for this flyway populations—the lagoons and bays either side of the German-Polish border, out of ten SPAs forming one coherent area (Fig. 4) only two have MPs. Moreover, the key SPAs within this area that regularly hold the highest Scaup numbers do not have MPs, they are: Greifswalder Bodden und südlicher Strelasund (DE1747402) in Germany and Szczecin Lagoon (PLB320009) in Poland. The Greifswalder Bodden, Teile des Strelasundes und Nordspitze Usedom (DE1747301) Special Area of Conservation (SAC), which overlaps with the Greifswalder Bodden und südlicher Strelasund SPA, was created under the Habitats Directive (Council Directive 92/43/EEC) and has a MP that identifies the threats to Scaup (e.g. from bycatch). However, because MPs for SACs (as against SPAs) are not primarily directed towards bird conservation, there are no specific regulations to limit the current stressors upon Scaup at this site40. The existing MPs for two other SPAs (“Vorpommersche Boddenlandschaft und nördlicher Strelasund” and “Dolina Dolnej Odry”) either do not identify main threats to Scaup or fail to impose sufficient conservation measures41,42.
Other SPAs that are less important for Scaup within Unit#3 west of the core wintering area include Östliche Kieler Bucht (DE1530491) and Ostsee östlich Wagrien (DE1633491), which have MPs identifying the threat from bycatch. This includes a voluntary agreement between the Schleswig Holstein Ministry of the Environment and local fishery associations, under which areas are closed to fishing if “concentrations of ducks” (> 100) are present in the areas. Fishermen have two days to remove their gear after closure. There are rigid legal provisions at these two sites that prohibit fishing with gillnets within 200 m of the shore43,44. To date, there is no evidence of a positive effect and reduction of bycatch of diving birds, so we recommend a study of the effectiveness of these provisions.
The shift in the centre of gravity of the wintering population to Germany and Poland highlights the ineffectiveness of conservation measures directed towards Scaup (and other diving birds) there. Despite the existence of SPAs in which the Scaup is specifically protected and evidence of the cost of gillnet bycatch to local diving ducks, the most serious pressure remains unchecked. In 2011–2012, results from research work in the Szczecin Lagoon37 recommended the MP proposed reducing the Scaup (and other diving birds) bycatch by spatiotemporal regulation of gillnet fisheries to avoid key areas used by the birds. Unfortunately, the effective solutions to deliver results for bird conservation were considered too far-reaching by fishing interests. The fishing lobby blocked official approval of the MP by government and so these measures were never implemented. Given the high rates of Scaup bycatch, the designation of the area as a SPA offers no effective protection to the species at this site32. The effectiveness of SPA designation for a particular species remains ineffective, as long as effective management is not implemented. Given the increasing relative importance of the German/Polish resorts to the species in recent years, the lack of effective measures within these SPAs is becoming more critical to safeguard the conservation of the North-West Europe population of Scaup. Suitably prepared MPs, containing a bycatch monitoring order, would solve this problem, setting bycatch thresholds, according to the recommendations of BirdLife International45—1% of natural mortality calculated on the basis of local species abundance. If this value is exceeded, spatiotemporal restrictions on gillnet fishery should be introduced.
Looking to the future, areas that were formerly stopovers are already becoming wintering sites in Sweden and Estonia. Although currently not numerically significant in winter, these sites already hold significant numbers during migration. In the future, satellite areas (Unit#4) have the potential to develop into important wintering grounds and therefore require adequate protection from factors known to affect Scaup survival.
Previous studies show that bycatch in fishing nets is one of the most serious anthropogenic pressures during the non-breeding period for many diving birds6, although we cannot exclude the influence of other factors such as food availability and quality26 and disturbance from hunting46 and water sports37. Because the majority of North-West Europe’s Scaup winter in relatively few places, conservation interventions at these key sites are particularly important. The shift in wintering distribution poses new challenges for countries increasingly responsible for the conservation of this species in winter. Lack of adequate protection in this region means that these areas may act as sink habitats (in the sense of the source-sink model 47). The shift of wintering areas to sink habitats exposes an increasing part of the population to the pressures present there. This is not only the case for Scaup but also for a range of other diving bird species. These birds concentrate in the most attractive areas rich in food, often biologically productive transitional waters, where marine and freshwater birds meet in high densities. For this reason, effective conservation measures directed at Scaup will positively impact upon a whole range of other species with similar ecology. This suggests that protection measures taken for the Scaup could also benefit associated marine species in the same areas such as Long-tailed Duck, Velvet Scoter, Common Scoter Melanitta nigra, as well as for coastal zone species such as: Tufted Duck, Smew Mergellus albellus, and Goosander Mergus merganser.
Source: Ecology - nature.com