in

Effects of canopy midstory management and fuel moisture on wildfire behavior

  • 1.

    Westerling, A. L. Increasing western us forest wildfire activity: sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B 371, 20150178 (2016).

    Article  Google Scholar 

  • 2.

    Dennison, P. E., Brewer, S. C., Arnold, J. D. & Moritz, M. A. Large wildfire trends in the western united states, 1984–2011. Geophys. Res. Lett. 41, 2928–2933 (2014).

    ADS  Article  Google Scholar 

  • 3.

    Kasischke, E. S. & Turetsky, M. R. Recent changes in the fire regime across the North American boreal region—spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. 33 (2006).

  • 4.

    Littell, J. S., McKenzie, D., Peterson, D. L. & Westerling, A. L. Climate and wildfire area burned in western US ecoprovinces, 1916–2003. Ecol. Appl. 19, 1003–1021 (2009).

    PubMed  Article  Google Scholar 

  • 5.

    Abatzoglou, J. T. & Kolden, C. A. Relationships between climate and macroscale area burned in the western United States. Int. J. Wildland Fire 22, 1003–1020 (2013).

    Article  Google Scholar 

  • 6.

    Kelly, R. et al. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proc. Natl. Acad. Sci. 110, 13055–13060 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 7.

    Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. 113, 11770–11775 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 8.

    Williams, A. P. & Abatzoglou, J. T. Recent advances and remaining uncertainties in resolving past and future climate effects on global fire activity. Curr. Clim. Change Rep. 2, 1–14 (2016).

    Article  Google Scholar 

  • 9.

    Seager, R. et al. Climatology, variability, and trends in the us vapor pressure deficit, an important fire-related meteorological quantity. J. Appl. Meteorol. Climatol. 54, 1121–1141 (2015).

    ADS  Article  Google Scholar 

  • 10.

    Radeloff, V. C. et al. Rapid growth of the us wildland–urban interface raises wildfire risk. Proc. Natl. Acad. Sci. 115, 3314–3319 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 11.

    Fried, J. S. et al. Predicting the effect of climate change on wildfire behavior and initial attack success. Clim. Change 87, 251–264 (2008).

    Article  Google Scholar 

  • 12.

    Agee, J. K. & Skinner, C. N. Basic principles of forest fuel reduction treatments. For. Ecol. Manag. 211, 83–96 (2005).

    Article  Google Scholar 

  • 13.

    Schwilk, D. W. et al. The national fire and fire surrogate study: effects of fuel reduction methods on forest vegetation structure and fuels. Ecol. Appl. 19, 285–304 (2009).

    PubMed  Article  Google Scholar 

  • 14.

    Whitehead, R. et al. Effect of a spaced thinning in mature lodgepole pine on within-stand microclimate and fine fuel moisture content. In Andrews, P. L., & Butler, B. W., comps. Fuels Management-How to Measure Success: Conference Proceedings. 28–30 March 2006; Portland, OR. Proceedings RMRS-P-41. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station, vol. 41, 523–536 (2006).

  • 15.

    Whitehead, R. J. et al. Effect of commercial thinning on within-stand microclimate and fine fuel moisture conditions in a mature lodgepole pine stand in southeastern British Columbia. Canadian Forest Service, Canadian Wood Fibre Centre. British Columbia, Information Report, FI-X-004 (2008).

  • 16.

    Parsons, R. A. et al. Modeling thinning effects on fire behavior with standfire. Ann. For. Sci. 75, 7 (2018).

    Article  Google Scholar 

  • 17.

    Kalies, E. L. & Kent, L. L. Y. Tamm review: Are fuel treatments effective at achieving ecological and social objectives? A systematic review. For. Ecol. Manag. 375, 84–95 (2016).

    Article  Google Scholar 

  • 18.

    Banerjee, T. Impacts of forest thinning on wildland fire behavior. Forests 11, 918 (2020).

    Article  Google Scholar 

  • 19.

    Syifa, M., Panahi, M. & Lee, C.-W. Mapping of post-wildfire burned area using a hybrid algorithm and satellite data: the case of the camp fire wildfire in California, USA. Remote Sensing 12, 623 (2020).

    ADS  Article  Google Scholar 

  • 20.

    Storey, M. A., Price, O. F., Sharples, J. J. & Bradstock, R. A. Drivers of long-distance spotting during wildfires in south-eastern Australia. Int. J. Wildland Fire (2020).

  • 21.

    Arienti, M. C., Cumming, S. G. & Boutin, S. Empirical models of forest fire initial attack success probabilities: the effects of fuels, anthropogenic linear features, fire weather, and management. Can. J. For. Res. 36, 3155–3166 (2006).

    Article  Google Scholar 

  • 22.

    Van Wagner, C. E. Fire Behaviour Mechanisms in a Red Pine Plantation: Field and Laboratory Evidence, vol. 1229 (Ministry of Forestry and Rural Development, 1968).

  • 23.

    Wagner, C. V. Conditions for the start and spread of crown fire. Can. J. For. Res. 7, 23–34 (1977).

    Article  Google Scholar 

  • 24.

    Graham, R. T., Harvey, A. E., Jain, T. B. & Tonn, J. R. Effects of thinning and similar stand treatments on fire behavior in western forests. USDA Forest Service, Pacific Northwest Research Station, General Technical Report PNW-GTR-463 (1999).

  • 25.

    Graham, R. T., McCaffrey, S. & Jain, T. B. Science basis for changing forest structure to modify wildfire behavior and severity. The Bark Beetles, Fuels, and Fire Bibliography 167 (2004).

  • 26.

    Varner, M. & Keyes, C. R. Fuels treatments and fire models: errors and corrections. Fire Manag. Today 69, 47–50 (2009).

    Google Scholar 

  • 27.

    Amiro, B., Stocks, B., Alexander, M., Ana, F. & Wotton, B. Fire, climate change, carbon and fuel management in the Canadian boreal forest. Int. J. Wildland Fire 10, 405–4 (2001).

    Article  Google Scholar 

  • 28.

    Pollet, J. & Omi, P. N. Effect of thinning and prescribed burning on crown fire severity in ponderosa pine forests. Int. J. Wildland Fire 11, 1–10 (2002).

    Article  Google Scholar 

  • 29.

    Peterson, D. L. et al. Forest structure and fire hazard in dry forests of the western United States. Gen. Tech. Rep. PNW-GTR-628. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station. 30 p 628 (2005).

  • 30.

    Stephens, S. L. & Moghaddas, J. J. Experimental fuel treatment impacts on forest structure, potential fire behavior, and predicted tree mortality in a california mixed conifer forest. For. Ecol. Manag. 215, 21–36 (2005).

    Article  Google Scholar 

  • 31.

    Safford, H. D., Schmidt, D. A. & Carlson, C. H. Effects of fuel treatments on fire severity in an area of wildland-urban interface, angora fire, lake Tahoe basin, California. For. Ecol. Manag. 258, 773–787 (2009).

    Article  Google Scholar 

  • 32.

    Stephens, S. L. et al. Fire treatment effects on vegetation structure, fuels, and potential fire severity in western us forests. Ecol. Appl. 19, 305–320 (2009).

    PubMed  Article  Google Scholar 

  • 33.

    Hudak, A. et al. Review of fuel treatment effectiveness in forests and rangelands and a case study from the 2007 megafires in central Idaho USA (no. rmrs-gtr-252). Fort Collins, CO: Rocky Mountain Research Station Publishing Services (2011).

  • 34.

    Waldrop, T. A. & Goodrick, S. L. Introduction to prescribed fires in southern ecosystems. Science Update SRS-054. Asheville, NC: US Department of Agriculture Forest Service, Southern Research Station. 80 p. 54, 1–80 (2012).

  • 35.

    Martinson, E. J. & Omi, P. N. Fuel treatments and fire severity: a meta-analysis. Res. Pap. RMRS-RP-103WWW. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. 38, p. 103 (2013).

  • 36.

    Kennedy, M. C. & Johnson, M. C. Fuel treatment prescriptions alter spatial patterns of fire severity around the wildland–urban interface during the Wallow Fire, Arizona, USA. For. Ecol. Manag. 318, 122–132 (2014).

    Article  Google Scholar 

  • 37.

    Barnett, K., Parks, S. A., Miller, C. & Naughton, H. T. Beyond fuel treatment effectiveness: characterizing interactions between fire and treatments in the US. Forests 7, 237 (2016).

    Article  Google Scholar 

  • 38.

    Just, M. G., Hohmann, M. G. & Hoffmann, W. A. Where fire stops: vegetation structure and microclimate influence fire spread along an ecotonal gradient. Plant Ecol. 217, 631–644 (2016).

    Article  Google Scholar 

  • 39.

    Veenendaal, E. M. et al. On the relationship between fire regime and vegetation structure in the tropics. New Phytol. 218, 153–166 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Bessie, W. & Johnson, E. The relative importance of fuels and weather on fire behavior in subalpine forests. Ecology 76, 747–762 (1995).

    Article  Google Scholar 

  • 41.

    Rothermel, R. C. A mathematical model for predicting fire spread in wildland fuels. Res. Pap. INT-115. Ogden, UT: US Department of Agriculture, Intermountain Forest and Range Experiment Station. 40 p. 115 (1972).

  • 42.

    Hoffman, C. M. et al. Surface fire intensity influences simulated crown fire behavior in lodgepole pine forests with recent mountain pine beetle-caused tree mortality. For. Sci. 59, 390–399 (2012).

    Article  Google Scholar 

  • 43.

    Keyes, C. & Varner, J. Pitfalls in the silvicultural treatment of canopy fuels. Fire Management Today (2006).

  • 44.

    Moon, K., Duff, T. & Tolhurst, K. Sub-canopy forest winds: understanding wind profiles for fire behaviour simulation. Fire Saf. J. 105, 320–329 (2016).

    Article  Google Scholar 

  • 45.

    Beer, T. The interaction of wind and fire. Boundary-Layer Meteorol.https://doi.org/10.1007/BF00183958 (1991).

    ADS  Article  Google Scholar 

  • 46.

    Cheney, N., Gould, J. & Catchpole, W. The influence of fuel, weather and fire shape variables on fire-spread in grasslands. Int. J. Wildland Fire 3, 31–44 (1993).

    Article  Google Scholar 

  • 47.

    Cochrane, M. A. Fire science for rainforests. Nature 421, 913 (2003).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 48.

    Fulé, P. Z., McHugh, C., Heinlein, T. A. & Covington, W. W. Potential fire behavior is reduced following forest restoration treatments (Technical Report 2001).

  • 49.

    Fulé, P. Z., Crouse, J. E., Roccaforte, J. P. & Kalies, E. L. Do thinning and/or burning treatments in western USA ponderosa or Jeffrey pine-dominated forests help restore natural fire behavior?. For. Ecol. Manag. 269, 68–81 (2012).

    Article  Google Scholar 

  • 50.

    Contreras, M. A., Parsons, R. A. & Chung, W. Modeling tree-level fuel connectivity to evaluate the effectiveness of thinning treatments for reducing crown fire potential. For. Ecol. Manag. 264, 134–149 (2012).

    Article  Google Scholar 

  • 51.

    White, D. L., Waldrop, T. A. & Jones, S. M. Forty years of prescribed burning on the santee fire plots: effects on understory vegetation. Gen. Tech. Rep. SE-69. Asheville, NC: US Department of Agriculture, Forest Service, Southeastern Forest Experiment Station. pp. 51–59 (1990).

  • 52.

    Davies, G., Domenech-Jardi, R., Gray, A. & Johnson, P. Vegetation structure and fire weather influence variation in burn severity and fuel consumption during peatland wildfires. Biogeosciences 12, 15737–15762 (2016).

    Article  Google Scholar 

  • 53.

    Keeley, J. E. & Syphard, A. D. Twenty-first century California, USA, wildfires: fuel-dominated vs. wind-dominated fires. Fire Ecol. 15, 24 (2019).

    Article  Google Scholar 

  • 54.

    Hiers, J. K. et al. Fine dead fuel moisture shows complex lagged responses to environmental conditions in a saw palmetto (Serenoa repens) flatwoods. Agric. For. Meteorol. 266, 20–28 (2019).

    ADS  Article  Google Scholar 

  • 55.

    Finney, M. A. et al. Role of buoyant flame dynamics in wildfire spread. Proc. Natl. Acad. Sci. 112, 9833–9838 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 56.

    Reisner, J., Wynne, S., Margolin, L. & Linn, R. Coupled atmospheric-fire modeling employing the method of averages. Mon. Weather Rev. 128, 3683–3691 (2000).

    ADS  Article  Google Scholar 

  • 57.

    Mell, W., Maranghides, A., McDermott, R. & Manzello, S. L. Numerical simulation and experiments of burning douglas fir trees. Combust. Flame 156, 2023–2041 (2009).

    CAS  Article  Google Scholar 

  • 58.

    Morvan, D. Physical phenomena and length scales governing the behaviour of wildfires: a case for physical modelling. Fire Technol. 47, 437–460 (2011).

    Article  Google Scholar 

  • 59.

    Parsons, R. A., Mell, W. E. & McCauley, P. Linking 3d spatial models of fuels and fire: effects of spatial heterogeneity on fire behavior. Ecol. Model. 222, 679–691 (2011).

    Article  Google Scholar 

  • 60.

    Parsons, R. et al. STANDFIRE: An IFT-DSS module for spatially explicit, 3d fuel treatment analysis (Technical Report 2015).

  • 61.

    Hoffman, C. M., Linn, R., Parsons, R., Sieg, C. & Winterkamp, J. Modeling spatial and temporal dynamics of wind flow and potential fire behavior following a mountain pine beetle outbreak in a lodgepole pine forest. Agric. For. Meteorol. 204, 79–93 (2015).

    ADS  Article  Google Scholar 

  • 62.

    Hoffman, C. et al. Evaluating crown fire rate of spread predictions from physics-based models. Fire Technol. 52, 221–237 (2016).

    Article  Google Scholar 

  • 63.

    Pimont, F. et al. Modeling fuels and fire effects in 3d: model description and applications. Environ. Model. Softw. 80, 225–244 (2016).

    Article  Google Scholar 

  • 64.

    Pimont, F., Dupuy, J.-L., Linn, R. R., Parsons, R. & Martin-StPaul, N. Representativeness of wind measurements in fire experiments: lessons learned from large-eddy simulations in a homogeneous forest. Agric. For. Meteorol. 232, 479–488 (2017).

    ADS  Article  Google Scholar 

  • 65.

    Pimont, F., Dupuy, J.-L., Linn, R. R. & Dupont, S. Impacts of tree canopy structure on wind flows and fire propagation simulated with FIRETEC. Ann. For. Sci. 68, 523 (2011).

    Article  Google Scholar 

  • 66.

    Linn, R. R., Sieg, C. H., Hoffman, C. M., Winterkamp, J. L. & McMillin, J. D. Modeling wind fields and fire propagation following bark beetle outbreaks in spatially-heterogeneous Pinyon–Juniper woodland fuel complexes. Agric. For. Meteorol. 173, 139–153 (2013).

    ADS  Article  Google Scholar 

  • 67.

    Kiefer, M. T., Heilman, W. E., Zhong, S., Charney, J. J. & Bian, X. Mean and turbulent flow downstream of a low-intensity fire: influence of canopy and background atmospheric conditions. J. Appl. Meteorol. Climatol. 54, 42–57 (2015).

    ADS  Article  Google Scholar 

  • 68.

    Clements, C. B. et al. Observing the dynamics of wildland grass fires: fireflux—a field validation experiment. Bull. Am. Meteorol. Soc. 88, 1369–1382 (2007).

    ADS  Article  Google Scholar 

  • 69.

    Clements, C. B., Zhong, S., Bian, X., Heilman, W. E. & Byun, D. W. First observations of turbulence generated by grass fires. J. Geophys. Res. Atmos. 113, D22 (2008).

    Article  Google Scholar 

  • 70.

    Seto, D., Clements, C. B. & Heilman, W. E. Turbulence spectra measured during fire front passage. Agric. For. Meteorol. 169, 195–210. https://doi.org/10.1016/j.agrformet.2012.09.015 (2013).

    ADS  Article  Google Scholar 

  • 71.

    Heilman, W. E. et al. Observations of fire-induced turbulence regimes during low-intensity wildland fires in forested environments: implications for smoke dispersion. Atmos. Sci. Lett. 16, 453–460 (2015).

    ADS  Article  Google Scholar 

  • 72.

    Clements, C. B. et al. The fireflux II experiment: a model-guided field experiment to improve understanding of fire–atmosphere interactions and fire spread. Int. J. Wildland Fire 28, 308–326 (2019).

    Article  Google Scholar 

  • 73.

    Banerjee, T. & Katul, G. Logarithmic scaling in the longitudinal velocity variance explained by a spectral budget. Phys. Fluids 25, 125106 (2013).

    ADS  Article  CAS  Google Scholar 

  • 74.

    Heilman, W. E. et al. Atmospheric turbulence observations in the vicinity of surface fires in forested environments. J. Appl. Meteorol. Climatol. 56, 3133–3150 (2017).

    ADS  Article  Google Scholar 

  • 75.

    Keeley, J. E. & Zedler, P. H. Large, high-intensity fire events in southern California shrublands: debunking the fine-grain age patch model. Ecol. Appl. 19, 69–94 (2009).

    PubMed  Article  Google Scholar 

  • 76.

    Jin, Y. et al. Contrasting controls on wildland fires in southern California during periods with and without Santa Ana winds. J. Geophys. Res. Biogeosciences 119, 432–450 (2014).

    ADS  Article  Google Scholar 

  • 77.

    Hiers, J. K., O’Brien, J. J., Will, R. E. & Mitchell, R. J. Forest floor depth mediates understory vigor in xeric pinus palustris ecosystems. Ecol. Appl. 17, 806–814 (2007).

    PubMed  Article  Google Scholar 

  • 78.

    Parresol, B. R., Shea, D. & Ottmar, R. Creating a fuels baseline and establishing fire frequency relationships to develop a landscape management strategy at the savannah river site. In Andrews, P. L. & Butler, B. W., comps Fuels Management-How to Measure Success: Conference Proceedings. 28–30 March 2006; Portland, OR. Proceedings RMRS-P-41. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station, vol. 41, pp 351–366 (2006).

  • 79.

    Sackett, S. S. & Haase, S. M. Fuel loadings in southwestern ecosystems of the United States. United States Department of Agriculture, Forest Service General Technical Report 187–192 (1996).

  • 80.

    Bigelow, S. W. & North, M. P. Microclimate effects of fuels-reduction and group-selection silviculture: implications for fire behavior in Sierran mixed-conifer forests. For. Ecol. Manag. 264, 51–59 (2012).

    Article  Google Scholar 

  • 81.

    Faiella, S. M. & Bailey, J. D. Fluctuations in fuel moisture across restoration treatments in semi-arid ponderosa pine forests of northern Arizona, USA. Int. J. Wildland Fire 16, 119–127 (2007).

    Article  Google Scholar 

  • 82.

    Estes, B. L., Knapp, E. E., Skinner, C. N. & Uzoh, F. C. Seasonal variation in surface fuel moisture between unthinned and thinned mixed conifer forest, northern California, USA. Int. J. Wildland Fire 21, 428–435 (2012).

    Article  Google Scholar 

  • 83.

    Pook, E. & Gill, A. Variation of live and dead fine fuel moisture in pinus radiata plantations of the Australian-capital-territory. Int. J. Wildland Fire 3, 155–168 (1993).

    Article  Google Scholar 

  • 84.

    Weatherspoon, C. P. & Skinner, C. Fire-silviculture relationships in sierra forests. Sierra nevada ecosystem project: final report to congress 2, 1167–1176 (1996).

  • 85.

    Countryman, C. Old-growth conversion also converts fire climate. US Forest Service Fire Control Notes 17, 15–19 (1955).

    Google Scholar 

  • 86.

    Linn, R. R. A transport model for prediction of wildfire behavior. Technical Report, Los Alamos National Lab., NM (United States) (1997).

  • 87.

    Linn, R., Winterkamp, J., Colman, J. J., Edminster, C. & Bailey, J. D. Modeling interactions between fire and atmosphere in discrete element fuel beds. Int. J. Wildland Fire 14, 37–48 (2005).

    Article  Google Scholar 

  • 88.

    Linn, R. R. & Cunningham, P. Numerical simulations of grass fires using a coupled atmosphere-fire model: basic fire behavior and dependence on wind speed. J. Geophys. Res. Atmos. 110, D13 (2005).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Superconductor technology for smaller, sooner fusion

    Solar-powered system extracts drinkable water from “dry” air