USDA. Coffee Annual Coffee. https://gain.fas.usda.gov/RecentGAINPublications/LOCK-UPREPORT_Pretoria_SouthAfrica-Republicof_10-29-2009.pdf (2019).
Carvalho Guarçoni, R. et al. Influence of solar radiation and wet processing on the final quality of Arabica coffee. J. Food Qual. https://doi.org/10.1155/2018/6408571 (2018).
Iamanaka, B. T. et al. Reprint of ‘The mycobiota of coffee beans and its influence on the coffee beverage’. Food Res. Int. 61, 33–38. https://doi.org/10.1016/j.foodres.2014.05.023 (2014).
Barnes, E. C., Jumpathong, J., Lumyong, S., Voigt, K. & Hertweck, C. Daldionin, an unprecedented binaphthyl derivative, and diverse polyketide congeners from a fungal orchid endophyte. Chem. A Eur. J. 22, 4551–4555. https://doi.org/10.1002/chem.201504005 (2016).
Descroix, F. & Snoeck, J. Environmental factors suitable for coffee cultivation. In Coffee: Growing, Processing, Sustainable Production 164–177, https://doi.org/10.1002/9783527619627.ch6 (2008).
De Bruyn, F. et al. Exploring the impacts of postharvest processing on the microbiota and metabolite profiles during green coffee bean production. Am. Soc. Microbiol. https://doi.org/10.1128/AEM.02398-16 (2016).
Hamdouche, Y. et al. Discrimination of post-harvest coffee processing methods by microbial ecology analyses. Food Control 65, 112–120. https://doi.org/10.1016/j.foodcont.2016.01.022 (2016).
Zhao, Q. et al. Long-term coffee monoculture alters soil chemical properties and microbial communities. Sci. Rep. 8, 1–11. https://doi.org/10.1038/s41598-018-24537-2 (2018).
Júnior, P. P. et al. Agroecological coffee management increases arbuscular mycorrhizal fungi diversity. PLoS ONE 14, 1–19. https://doi.org/10.1371/journal.pone.0209093 (2019).
Melloni, R. et al. Sistemas Agroflorestais cafeeiro-araucária e seu efeito na microbiota do solo e seus processos. Ciência Florest. 28, 784–795. https://doi.org/10.5902/1980509832392 (2018).
Oliveira, M. N. V. et al. Endophytic microbial diversity in coffee cherries of Coffea arabica from southeastern Brazil. Can. J. Microbiol. 59, 221–230. https://doi.org/10.1139/cjm-2012-0674 (2013).
Nasanit, R. & Satayawut, K. Microbiological study during coffee fermentation of Coffea arabica var chiangmai 80 in Thailand. Kasetsart J. Nat. Sci. 49, 32–41 (2015).
Evangelista, S. R. et al. Improvement of coffee beverage quality by using selected yeasts strains during the fermentation in dry process. Food Res. Int. 61, 183–195. https://doi.org/10.1016/j.foodres.2013.11.033 (2014).
Pereira, G. V. D. M. et al. Potential of lactic acid bacteria to improve the fermentation and quality of coffee during on-farm processing. Int. J. Food Sci. Technol. 51, 1689–1695. https://doi.org/10.1111/ijfs.13142 (2016).
Sahu, N., Duraisamy, V., Sahu, A., Lal, N. & K. Singh, S. Strength of microbes in nutrient cycling: A key to soil health. In Agriculturally Important Microbes for Sustainable Agriculture 69–86, https://doi.org/10.1007/978-981-10-5589-8_4 (2017).
Zhang, S. J. et al. Following coffee production from cherries to cup: Microbiological and metabolomic analysis of wet processing of Coffea arabica. Appl. Environ. Microbiol. 85, 1–22. https://doi.org/10.1128/AEM.02635-18 (2019).
Ramos, C. L. et al. Determination of dynamic characteristics of microbiota in a fermented beverage produced by Brazilian Amerindians using culture-dependent and culture-independent methods. Int. J. Food Microbiol. 140, 225–231. https://doi.org/10.1016/j.ijfoodmicro.2010.03.029 (2010).
Faoro, H. et al. Influence of soil characteristics on the diversity of bacteria in the Southern Brazilian Atlantic Forest. Appl. Environ. Microbiol. 76, 4744–4749. https://doi.org/10.1128/AEM.03025-09a (2010).
Defelipo, B. V. & Ribeiro, A. C. Análise química do solo (metodologia). Bol. Extensão 28, 1–26 (1997).
Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. Am. Soc. Microbiol. https://doi.org/10.1128/msystems.00009-15 (2015).
Pylro, V. S. et al. Data analysis for 16S microbial profiling from different benchtop sequencing platforms. J. Microbiol. Methods 107, 30–37. https://doi.org/10.1016/j.mimet.2014.08.018 (2014).
Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998. https://doi.org/10.1038/nmeth.2604 (2013).
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. https://doi.org/10.1038/nmeth.f.303 (2010).
Edgar, R. C. UCHIME2: Improved chimera prediction for amplicon sequencing. BioRxiv https://doi.org/10.1101/074252 (2016).
Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. https://doi.org/10.1093/nar/gks1219 (2013).
Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: An effective distance metric for microbial community comparison. ISME J. 5, 169–172. https://doi.org/10.1038/ismej.2010.133 (2011).
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461. https://doi.org/10.1093/bioinformatics/btq461 (2010).
Bengtsson-Palme, J. et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 4, 914–919. https://doi.org/10.1111/2041-210X.12073 (2013).
Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264. https://doi.org/10.1093/nar/gky1022 (2019).
Oksanen, J. et al. Community Ecology Package. 1–296, https://cran.r-project.org/web/packages/vegan/vegan.pdf (2019).
R Core Team. R: A Language and Environment for Statistical Computing. https://www.r-project.org/ (2018).
Borcard, D. et al. Canonical ordination. In Numerical Ecology with R 153–225, https://doi.org/10.1007/978-1-4419-7976-6_6 (2011).
Gomes, D. G. E. et al. Bats perceptually weight prey cues across sensory systems when hunting in noise. Science 353, 1277–1280. https://doi.org/10.1126/science.aaf7934 (2016).
Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLOS Comput. Biol. 8, 1–11. https://doi.org/10.1371/journal.pcbi.1002687 (2012).
Watts, S. C., Ritchie, S. C., Inouye, M. & Holt, K. E. FastSpar: Rapid and scalable correlation estimation for compositional data. Bioinformatics 35, 1064–1066. https://doi.org/10.1093/bioinformatics/bty734 (2019).
Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Syst 1695, 1–9 (2006).
Avelino, J. et al. Effects of slope exposure, altitude and yield on coffee quality in two altitude terroirs of Costa Rica, Orosi and Santa María de Dota. J. Sci. Food Agric. 85, 1869–1876. https://doi.org/10.1002/jsfa.2188 (2005).
Wei, L., Wai, M., Curran, P., Yu, B. & Quan, S. Coffee fermentation and flavor—An intricate and delicate relationship. Food Chem. 185, 182–191. https://doi.org/10.1016/j.foodchem.2015.03.124 (2015).
Fulthorpe, R., Martin, A. R. & Isaac, M. E. Root endophytes of coffee ( Coffea arabica): Variation across climatic gradients and relationships with functional traits. Phytobiomes J. 4, 27–39. https://doi.org/10.1094/PBIOMES-04-19-0021-R (2020).
Chu, H. et al. Effects of slope aspects on soil bacterial and arbuscular fungal communities in a boreal forest in China. Pedosphere 26, 226–234. https://doi.org/10.1016/S1002-0160(15)60037-6 (2016).
Karungi, J. et al. Elevation and cropping system as drivers of microclimate and abundance of soil macrofauna in coffee farmlands in mountainous ecologies. Appl. Soil Ecol. 132, 126–134. https://doi.org/10.1016/J.APSOIL.2018.08.003 (2018).
Ferreira, W. P. M., Queiroz, D. M., Silvac, S. A., Tomaz, R. S. & Corrêa, P. C. Effects of the orientation of the mountainside, altitude and varieties on the quality of the coffee beverage from the “Matas de Minas” region, Brazilian Southeast. Am. J. Plant Sci. 7, 1291–1303. https://doi.org/10.4236/ajps.2016.78124 (2016).
Velmourougane, K. Impact of organic and conventional systems of coffee farming on soil properties and culturable microbial diversity. Scientifica 1–9, 2016. https://doi.org/10.1155/2016/3604026 (2016).
Siles, J. A. & Margesin, R. Abundance and diversity of bacterial, archaeal, and fungal communities along an altitudinal gradient in alpine forest soils: What are the driving factors?. Soil Microbiol. 72, 207–220. https://doi.org/10.1007/s00248-016-0748-2 (2016).
Frank, A., Saldierna Guzmán, J. & Shay, J. Transmission of bacterial endophytes. Microorganisms 5, 70. https://doi.org/10.3390/microorganisms5040070 (2017).
Haile, M. & Kang, W. H. The role of microbes in coffee fermentation and their impact on coffee quality. J. Food Qual. 2019, 6. https://doi.org/10.1155/2019/4836709 (2019).
Decazy, F. et al. Quality of different Honduran coffees in relation to several environments. J. Food Sci. 68, 2356–2361. https://doi.org/10.1111/j.1365-2621.2003.tb05772.x (2003).
de Melo Pereira, G. V. et al. Conducting starter culture-controlled fermentations of coffee beans during on-farm wet processing: Growth, metabolic analyses and sensorial effects. Food Res. Int. 75, 348–356. https://doi.org/10.1016/j.foodres.2015.06.027 (2015).
Zhang, W. et al. Microbial diversity in two traditional bacterial douchi from Gansu province in northwest China using Illumina sequencing. PLoS ONE 13, 1–16. https://doi.org/10.1371/journal.pone.0194876 (2018).
Tolessa, K., D’heer, J., Duchateau, L. & Boeckx, P. Influence of growing altitude, shade and harvest period on quality and biochemical composition of Ethiopian specialty coffee. J. Sci. Food Agric. 97, 2849–2857. https://doi.org/10.1002/jsfa.8114 (2017).
Batista, D. et al. Legitimacy and implications of reducing Colletotrichum kahawae to subspecies in plant pathology. Front. Plant Sci. 7, 1–9. https://doi.org/10.3389/fpls.2016.02051 (2017).
Wei, Z. et al. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat. Commun. 6, 1–9. https://doi.org/10.1038/ncomms9413 (2015).
Source: Ecology - nature.com