in

Effects of intense storm events on dolphin occurrence and foraging behavior

  • 1.

    Harley, C. D. G. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).

    ADS  Article  Google Scholar 

  • 2.

    Gong, D., Kohut, J. T. & Glenn, S. M. Seasonal climatology of wind-driven circulation on the New Jersey Shelf. J. Geophys. Res. Oceans 115(C4) (2010).

  • 3.

    Glenn, S. M. et al. Stratified coastal ocean interactions with tropical cyclones. Nat. Commun. 7, 10887 (2016).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Locascio, J. V. & Mann, D. A. Effects of Hurricane Charley on fish chorusing. Biol. Let. 1, 362–365 (2005).

    Article  Google Scholar 

  • 5.

    Fiedler, P. C. et al. Effects of a tropical cyclone on a pelagic ecosystem from the physical environment to top predators. Mar. Ecol. Prog. Ser. 484, 1–16 (2013).

    ADS  Article  Google Scholar 

  • 6.

    Harmelin-Vivien, M. L. The effects of storms and cyclones on coral reefs: A review. J. Coastal Res. 211–231 (1994).

  • 7.

    Easterling, D. R. et al. Climate extremes: Observations, modeling, and impacts. Science 289, 2068–2074 (2000).

    ADS  CAS  Article  Google Scholar 

  • 8.

    International Panel on Climate Change (IPCC). Climate Change 2007: Impacts, Adaptation and Vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).

  • 9.

    Jentsch, A., Kreyling, J. & Beierkuhnlein, C. A new generation of climate change experiments: Events, not trends. Front. Ecol. Environ. 5, 365–374 (2007).

    Article  Google Scholar 

  • 10.

    Knutson, T. R. et al. Tropical cyclones and climate change. Nat. Geosci. 3, 157–163 (2010).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Biggs, C. R., Lowerre-Barbieri, S. K. & Erisman, B. Reproductive resilience of an estuarine fish in the eye of a hurricane. Biol. Let. 14, 20180579 (2018).

    Article  Google Scholar 

  • 12.

    Udyawer, V., Chin, A., Knip, D. M., Simpfendorfer, C. A. & Heupel, M. R. Variable response of coastal sharks to severe tropical storms: Environmental cues and changes in space use. Mar. Ecol. Prog. Ser. 480, 171–183 (2013).

    ADS  Article  Google Scholar 

  • 13.

    Lassig, B. R. The effects of a cyclonic storm on coral reef fish assemblages. Environ. Biol. Fishes 9, 55–63 (1983).

    Article  Google Scholar 

  • 14.

    Secor, D. H., Zhang, F., O’Brien, M. H. & Li, M. Ocean destratification and fish evacuation caused by a Mid-Atlantic tropical storm. ICES J. Mar. Sci. 76, 573–584 (2019).

    Article  Google Scholar 

  • 15.

    Boesch, D. F., Diaz, R. J. & Virnstein, R. W. Effects of Tropical Storm Agnes on soft-bottom macrobenthic communities of the James and York estuaries and the lower Chesapeake Bay. Chesapeake Sci. 17, 246–259 (1976).

    Article  Google Scholar 

  • 16.

    Walker, S. J., Degnan, B. M., Hooper, J. N. A. & Skilleter, G. A. Will increased storm disturbance affect the biodiversity of intertidal, nonscleractinian sessile fauna on coral reefs?. Glob. Change Biol. 14, 2755–2770 (2008).

    Google Scholar 

  • 17.

    Rosel, P. E. & Watts, H. Hurricane Impacts on Bottlenose Dolphins in the Northern Gulf of Mexico. Gulf Mexico Sci. 25, 7 (2008).

    Article  Google Scholar 

  • 18.

    Mullin, K. D., et al. Common bottlenose dolphins (Tursiops truncatus) in Lake Pontchartrain, Louisiana: 2007 to mid-2014. Prepared for the U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SEFSC-673 43 (2015).

  • 19.

    Langtimm, C. A. & Beck, C. A. Lower survival probabilities for adult Florida manatees in years with intense coastal storms. Ecol. Appl. 13, 257–268 (2003).

    Article  Google Scholar 

  • 20.

    Elliser, C. R. & Herzing, D. L. Changes in interspecies association patterns of Atlantic bottlenose dolphins, Tursiops truncatus, and Atlantic spotted dolphins, Stenella frontalis, after demographic changes related to environmental disturbance. Mar. Mammal Sci. 32, 602–618 (2016).

    Article  Google Scholar 

  • 21.

    Sinclair, C. Comparison of group size, abundance estimates and movement patterns of common bottlenose dolphins (Tursiops truncatus) in Mississippi Sound, Mississippi. MS Thesis, Louisiana State University, Baton Rouge. (2016).

  • 22.

    Smith, C. E. et al. Hurricane impacts on the foraging patterns of bottlenose dolphins Tursiops truncatus in Mississippi Sound. Mar. Ecol. Prog. Ser. 487, 231–244 (2013).

    ADS  Article  Google Scholar 

  • 23.

    Trainer, V. L., Hickey, B. M. & Horner, R. A. Biological and physical dynamics of domoic acid production off the Washington coast. Limnol. Oceanogr. 47, 1438–1446 (2002).

    ADS  CAS  Article  Google Scholar 

  • 24.

    Bassos-Hull, K. et al. Long-term site fidelity and seasonal abundance estimates of common bottlenose dolphins (Tursiops truncatus) along the southwest coast of Florida and responses to natural perturbations. J. Cetacean Res. Manag. 13, 19–30 (2013).

    Google Scholar 

  • 25.

    Scholin, C. A. et al. Mortality of sea lions along the central California coast linked to a toxic diatom bloom. Nature 403, 80 (2000).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Pirotta, E., Brooks, K. L., Graham, I. M. & Thompson, P. M. Variation in harbour porpoise activity in response to seismic survey noise. Biol. Let. 10, 20131090. https://doi.org/10.1098/rsbl.2013.1090 (2014).

    Article  Google Scholar 

  • 27.

    Wisniewska, D. M. et al. High rates of vessel noise disrupt foraging in wild harbour porpoises (Phocoena phocoena). Proc. R Soc. B Biol. Sci. 285(1872), 20172314 (2018).

    Article  Google Scholar 

  • 28.

    Gordon, C. Anthropogenic Noise and Cetacean Interactions in the 21st Century: A Contemporary Review of the Impacts of Environmental Noise Pollution on Cetacean Ecologies. University Honors Theses. Paper 625 (2018).

  • 29.

    Bittencourt, L. et al. Underwater noise in an impacted environment can affect Guiana dolphin communication. Mar. Pollut. Bull. 114, 1130–1134 (2017).

    CAS  Article  Google Scholar 

  • 30.

    Fouda, L. et al. Dolphins simplify their vocal calls in response to increased ambient noise. Biol. Lett. 14, 20180484 (2018).

    Article  Google Scholar 

  • 31.

    Seroka, G. et al. Rapid shelf-wide cooling response of a stratified coastal ocean to hurricanes. J. Geophys. Res. Oceans 122, 4845–4867 (2017).

    ADS  Article  Google Scholar 

  • 32.

    Barco, S., Burt, L., DePerte, A., & Digiovanni Jr, R. Marine mammal and sea turtle sightings in the vicinity of the maryland wind energy area July 2013–June 2015. Prepared for Maryland Department of Natural Resources, VAQF Scientific Report # 2015-06 (2015).

  • 33.

    Barco, S. G., Swingle, W. M., Mlellan, W. A., Harris, R. N. & Pabst, D. A. Local abundance and distribution of bottlenose dolphins (Tursiops truncatus) in the nearshore waters of Virginia Beach, Virginia. Mar. Mammal Sci. 15, 394–408 (1999).

    Article  Google Scholar 

  • 34.

    Toth, J. L., Hohn, A. A., Able, K. W. & Gorgone, A. M. Patterns of seasonal occurrence, distribution, and site fidelity of coastal bottlenose dolphins (Tursiops truncatus) in southern New Jersey, USA. Mar. Mammal Sci. 27, 94–110 (2011).

    Article  Google Scholar 

  • 35.

    Roberts, J. J. et al. Habitat-based cetacean density models for the US Atlantic and Gulf of Mexico. Sci. Rep. 6, 22615 (2016).

    ADS  CAS  Article  Google Scholar 

  • 36.

    Gannon, D. P. & Waples, D. M. Diets of coastal bottlenose dolphins from the US Mid-Atlantic coast differ by habitat. Mar. Mammal Sci. 20, 527–545 (2004).

    Article  Google Scholar 

  • 37.

    dos Santos, M. E., Coniglione, C. & Louro, S. Feeding behaviour of the bottlenose dolphin, Tursiops truncatus (Montagu, 1821) in the Sado estuary, Portugal, and a review of its prey species. Revista Brasileira de Zoociências 9, 31–39 (2007).

    Google Scholar 

  • 38.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Stat. Soc. Ser. B (Methodol.) 57, 289–300 (1995).

    MathSciNet  MATH  Google Scholar 

  • 39.

    Bailey, H. & Secor, D. H. Coastal evacuations by fish during extreme weather events. Sci. Rep. 6, 30280 (2016).

    ADS  CAS  Article  Google Scholar 

  • 40.

    Defran, R. H., Weller, D. W., Kelly, D. L. & Espinosa, M. A. Range characteristics of Pacific coast bottlenose dolphins (Tursiops truncatus) in the Southern California Bight. Mar. Mammal Sci. 15, 381–393 (1999).

    Article  Google Scholar 

  • 41.

    Spitz, J., Rousseau, Y. & Ridoux, V. Diet overlap between harbour porpoise and bottlenose dolphin: An argument in favour of interference competition for food?. Estuar. Coast. Shelf Sci. 70, 259–270 (2006).

    ADS  Article  Google Scholar 

  • 42.

    Craig, J. K. Aggregation on the edge: effects of hypoxia avoidance on the spatial distribution of brown shrimp and demersal fishes in the Northern Gulf of Mexico. Mar. Ecol. Prog. Ser. 445, 75–95 (2012).

    ADS  CAS  Article  Google Scholar 

  • 43.

    Wells, R. S., et al. Northward extension of the range of bottlenose dolphins along the California coast. in The Bottlenose Dolphin 421–432. (Academic Press, 1990).

  • 44.

    Bacheler, N. M., Shertzer, K. W., Cheshire, R. T. & MacMahan, J. H. Tropical storms influence the movement behavior of a demersal oceanic fish species. Sci. Rep. 9, 1481 (2019).

    ADS  Article  CAS  Google Scholar 

  • 45.

    Schumann, N., Gales, N. J., Harcourt, R. G. & Arnould, J. P. Impacts of climate change on Australian marine mammals. Aust. J. Zool. 61, 146–159 (2013).

    Article  Google Scholar 

  • 46.

    Weilgart, L. S. The impacts of anthropogenic ocean noise on cetaceans and implications for management. Can. J. Zool. 85(11), 1091–1116 (2007).

    Article  Google Scholar 

  • 47.

    New, L. F. et al. Modelling the biological significance of behavioural change in coastal bottlenose dolphins in response to disturbance. Funct. Ecol. 27, 314–322 (2013).

    Article  Google Scholar 

  • 48.

    Heithaus, M. R., Frid, A., Wirsing, A. J. & Worm, B. Predicting ecological consequences of marine top predator declines. Trends Ecol. Evol. 23, 202–210 (2008).

    Article  Google Scholar 

  • 49.

    National Academies of Sciences Engineering and Medicine. Approaches to Understanding the Cumulative Effects of Stressors on Marine Mammals (The National Academies Press, Washington, 2017). https://doi.org/10.17226/23479

    Google Scholar 

  • 50.

    Clark, C. W. et al. Acoustic masking in marine ecosystems: intuitions, analysis, and implication. Mar. Ecol. Prog. Ser. 395, 201–222 (2009).

    ADS  Article  Google Scholar 

  • 51.

    Clausen, K. T., Tougaard, J., Carstensen, J., Delefosse, M. & Teilmann, J. Noise affects porpoise click detections—The magnitude of the effect depends on logger type and detection filter settings. Bioacoustics 28(5), 443–458 (2019).

    Article  Google Scholar 

  • 52.

    Nuuttila, H. K. et al. Acoustic detection probability of bottlenose dolphins, Tursiops truncatus, with static acoustic dataloggers in Cardigan Bay, Wales. J. Acoust. Soc. Am. 134, 2596–2609 (2013).

    ADS  Article  Google Scholar 

  • 53.

    Garrod, A. et al. Validating automated click detector dolphin detection rates and investigating factors affecting performance. J. Acoust. Soc. Am. 144, 931–939 (2018).

    ADS  Article  Google Scholar 

  • 54.

    Janik, V. M. & Sayigh, L. S. Communication in bottlenose dolphins: 50 years of signature whistle research. J. Comp. Physiol. A. 199, 479–489 (2013).

    Article  Google Scholar 

  • 55.

    Wingfield, J. E. et al. Year-round spatiotemporal distribution of harbour porpoises within and around the Maryland wind energy area. PLoS ONE 12, e0176653 (2017).

    Article  CAS  Google Scholar 

  • 56.

    Bailey, H. et al. Empirical evidence that large marine predator foraging behavior is consistent with area-restricted search theory. Ecology 100, e02743 (2019).

    CAS  Article  Google Scholar 

  • 57.

    Simons, R. A. ERDDAP. NOAA/NMFS/SWFSC/ERD https://coastwatch.pfeg.noaa.gov/erddap (2018).

  • 58.

    JPL MUR MEaSUREs Project. GHRSST Level 4 MUR global foundation sea surface temperature analysis (v4.1). PO.DAAC. https://doi.org/10.5067/GHGMR-4FJ04 (2015).

    Article  Google Scholar 

  • 59.

    Carlström, J. Diel variation in echolocation behavior of wild harbor porpoises. Mar. Mammal Sci. 21, 1–12 (2005).

    MathSciNet  Article  Google Scholar 

  • 60.

    Wisniewska, D. M., Johnson, M., Nachtigall, P. E. & Madsen, P. T. Buzzing during biosonar-based interception of prey in the delphinids Tursiops truncatus and Pseudorca crassidens. J. Exp. Biol. 217(24), 4279–4282 (2014).

    Article  Google Scholar 

  • 61.

    Au, W. W. L. The Sonar of Dolphins (Springer-Verlag, Berlin, 1993).

    Google Scholar 

  • 62.

    Hildebrand, J. A. Anthropogenic and natural sources of ambient noise in the ocean. Mar. Ecol. Prog. Ser. 395, 5–20 (2009).

    ADS  Article  Google Scholar 

  • 63.

    Dugan, P. J., Klinck, H., Roch, M. A. & Helble, T. A. RAVEN X: High performance data mining toolbox for bioacoustic data analysis. arxiv:1610.03772. 2016.

  • 64.

    Wenz, G. M. Acoustic ambient noise in the ocean: Spectra and sources. J. Acoust. Soc. Am. 34, 1936–1956 (1962).

    ADS  Article  Google Scholar 

  • 65.

    Perrone, A. J. Ambient-noise-spectrum levels as a function of water depth. J. Acoust. Soc. Am. 48, 362–370 (1970).

    ADS  Article  Google Scholar 

  • 66.

    Bates, D. M. & Pinheiro, J. C. Linear and nonlinear mixed-effects models. Abstract submitted to the 1998 Kansas State University Annual Conference on Applied Statistics in Agriculture (1998).

  • 67.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48 (2015).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Ecological traits, genetic diversity and regional distribution of the macroalga Treptacantha elegans along the Catalan coast (NW Mediterranean Sea)

    Pushing the envelope with fusion magnets