in

Effects of nitrogen deposition and phosphorus addition on arbuscular mycorrhizal fungi of Chinese fir (Cunninghamia lanceolata)

  • 1.

    Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis. (Academic Press, New York, 2010).

  • 2.

    Campos-Soriano, L. & Segundo, B. S. New insights into the signaling pathways controlling defense gene expression in rice roots during the arbuscular mycorrhizal symbiosis. Plant Signal. Behav. 6, 553–557 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 3.

    He, X. H., Duan, Y. H., Chen, Y. L. & Xu, M. G. A 60-year journey of mycorrhizal research in China: Past, present and future directions. Sci. Chin. Life Sci. 53, 1374–1398 (2010).

    Google Scholar 

  • 4.

    Mao, L. & Liu, Y. J. The eco-physiological functions of arbuscular mycorrhizal fungi: A review. Sciencepap. Online 11, 236–245 (2018).

    Google Scholar 

  • 5.

    Karasawa, T., Hodge, A. & Fitter, A. H. Growth, respiration and nutrient acquisition by the arbuscular mycorrhizal fungus Glomus mosseae and its host plant Plantago lanceolata in cooled soil. Plant Cell Environ. 35, 819–828 (2012).

    CAS  PubMed  Google Scholar 

  • 6.

    Pozo, M. J. & Azcón-Aguilar, C. Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol. 10, 393–398 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 7.

    Parniske, M. Arbuscular mycorrhiza: The mother of plant root endosymbioses. Nat. Rev. Microbiol. 6, 763–775 (2008).

    CAS  PubMed  Google Scholar 

  • 8.

    Bryla, D. R. & Eissenstat, D. M. Respiratory Costs of Mycorrhizal Associations. (eds. Lambers, H. & Ribas-Carbo, M.) 207–224 (Springer The Netherlands, 2005).

  • 9.

    Bonfante, P. & Genre, A. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat. Commun. 48, 1038–1046 (2010).

    Google Scholar 

  • 10.

    Rouphael, Y. et al. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci. Hortic. 196, 91–108 (2015).

    Google Scholar 

  • 11.

    Veresoglou, S. D., Chen, B. D. & Rillig, M. C. Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol. Biochem. 46, 53–62 (2012).

    CAS  Google Scholar 

  • 12.

    Galloway, J. N. et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 320, 889–892 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 13.

    Song, X. Z., Gu, H. H., Wang, M., Zhou, G. M. & Li, Q. Management practices regulate the response of Moso bamboo foliar stoichiometry to nitrogen deposition. Sci. Rep. 6, 24107 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Galloway, J. N. & Cowling, E. B. Reactive nitrogen and the world: 200 years of change. Ambio 31, 64–71 (2002).

    PubMed  Google Scholar 

  • 15.

    Liu, J. et al. Enhanced nitrogen deposition over China. Nature 494, 459–462 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 16.

    Li, Q. et al. Nitrogen depositions increase soil respiration and decrease temperature sensitivity in a Moso bamboo forest. Agric. For. Meteorol. 268, 48–54 (2019).

    ADS  Google Scholar 

  • 17.

    Wang, J. F. & Liu, N. K. Research progress on mechanisms of atmospheric nitrogen deposition and its ecological impact. Pollut. Control Technol. 31, 17–21+39 (2018).

  • 18.

    Lin, J. X. et al. Research progress on effects of nitrogen deposition on symbiont of plant-arbuscular mycorrhizal. Grassl. Turf 35, 88–94 (2015).

    Google Scholar 

  • 19.

    Wang, Y. N. Physiological responses of Leymus chinens-arbuscular mycorrhizal symbiont to the interaction of nitrogen deposition and salt-alkali stress. PhD Thesis, Northeast Forestry University (2016).

  • 20.

    He, X. L., Liu, T. & Zhao, L. L. Effects of inoculating AM fungi on physiological characters and nutritional components of Astragalus membranaceus under different N application levels. Chin. J. Appl. Ecol. 20, 2118–2122 (2009).

    CAS  Google Scholar 

  • 21.

    Hodge, A. The plastic plant, root responses to heterogeneous supplies of nutrients. New. Phytol. 162, 9–24 (2004).

    Google Scholar 

  • 22.

    Lin, S. S. et al. Mycorrhizal studies and their application prospects in China. Acta Pratacult. Sin. 22, 310–325 (2013).

    Google Scholar 

  • 23.

    Liu, R. J. & Chen, Y. L. Mycorrhizology. (Science Press, 2007).

  • 24.

    Su, Y. B., Lin, C., Zhang, F. S. & Yang, X. L. Effect of arbuscular mycorrhizal fungi (Glomus Mosseae, Glomus Versiformea, Gigaspora Margarita and Gigaspora Rosea) on phosphate activities and soil organic phosphate content in clover rhizosphere. Soils 35, 334–338 (2003).

    CAS  Google Scholar 

  • 25.

    Feng, H. Y., Feng, G., Wang, J. G. & Li, X. L. Regulation of P status host plant on alkaline phosphatase (ALP) activity in intraradical hyphae and development of extraradical hyphae of AM fungi. Mycosystema 22, 589–598 (2003).

    CAS  Google Scholar 

  • 26.

    Zhang, S. B., Wang, Y. S., Yin, X. F., Liu, J. B. & Wu, F. X. Development of arbuscular mycorrhizal (AM) fungi and their influences on the absorption of N and P of maize at different soil phosphorus application levels. J. Plant Nutr. Fertil. 23, 649–657 (2017).

    Google Scholar 

  • 27.

    Shi, S. Z. et al. Ecophysiological effects of simulated nitrogen deposition on fine roots of Chinese fir (Cunninghamia lanceolata) seedlings. Acta Ecol. Sin. 37, 74–83 (2017).

    Google Scholar 

  • 28.

    Slezack, S., Dumas-Gaudot, E., Paynot, M. & Gianinazzi, S. Is a fully established arbuscular mycorrhizal symbiosis required for bioprotection of Pisum sativum roots against Aphanomyces euteiches?. Mol. Plant-Microbe Interact. 13, 238–241 (2000).

    CAS  PubMed  Google Scholar 

  • 29.

    Yang, J. Y., Wang, Y. H., Wen, G. S. & Yi, L. T. Effects of AM fungi and simulated nitrogen deposition on the growth and biomass accumulation of Solidago canadensis seedlings. Chin. J. Ecol. 32, 2953–2958 (2013).

    Google Scholar 

  • 30.

    Marschner, H. Marschner’s Mineral Nutrition of Higher Plants. (Academic Press, New York, 2012).

  • 31.

    García, I. V. & Mendoza, R. E. Relationships among soil properties, plant nutrition and arbuscular mycorrhizal fungi-plant symbioses in a temperate grassland along hydrologic, saline and sodic gradients. FEMS Microbiol. Ecol. 63, 359–371 (2008).

    PubMed  Google Scholar 

  • 32.

    Johnson, N. C. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol. 185, 631–647 (2010).

    CAS  PubMed  Google Scholar 

  • 33.

    Fitter, A. H. Costs and benefifits of mycorrhizas: implications for functioning under natural conditions. Experientia 47, 350–355 (1991).

    Google Scholar 

  • 34.

    Pang, L., Zhou, Z. C., Zhang, Y. & Feng, Z. P. Effects of atmospheric N sedimentation on growth and P efficiency of Pinus Massoniana mycorrhizal seedlings under low P stress. J. Plant Nutr. Fertil. 22, 225–235 (2016).

    CAS  Google Scholar 

  • 35.

    Johnson, N. C., Rowland, D. L., Corkidi, L., Egerton-Warburton, L. & Allen, E. B. Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84, 1895–1908 (2003).

    Google Scholar 

  • 36.

    Cai, X. Z. Effects of nitrogen addition on arbuscular mycorrhizal fungi and nitrogen uptake of Chinese fir seedlings. PhD Thesis, Fujian Normal University (2017).

  • 37.

    Bago, B. et al. Differential morphogenesis of the extraradical mycelium of an arbuscular mycorrhizal fungus grown monoxenically on spatially heterogeneous culture media. Mycologia 96, 452–462 (2004).

    PubMed  Google Scholar 

  • 38.

    Zhang, X. et al. Correlation between physicochemical properties of rhizosphere soil and arbuscular mycorrhizal fungi in Medicago sativa grassland. Northern Hortic. 13, 172–177 (2016).

    Google Scholar 

  • 39.

    Wang, J. Effects of AM fungi on plant growth and community structure under different soil nitrogen fertility. PhD Thesis, Lanzhou University (2018).

  • 40.

    Holguin, G., Vazquez, P. & Bashan, Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: An overview. Biol. Fertil. Soils. 33, 265–278 (2001).

    CAS  Google Scholar 

  • 41.

    Ma, L. M., Wang, P. T. & Wang, S. G. Effect of flooding time length on mycorrhizal colonization of three AM fungi in two wetland plants. Environ. Sci. 35, 263–270 (2014).

    Google Scholar 

  • 42.

    Sharma, D. & David, K. Moisture-a regulator of arbuscular mycorrhizal fungal community assembly and symbiotic phosphorus uptake. Mycorrhiza 25, 67–75 (2015).

    Google Scholar 

  • 43.

    Zhang, X. H. The adaptability of arbuscular mycorrhizal fungi to different soil environmental factors. PhD Thesis, Agricultural University of Hebei (2003).

  • 44.

    Li, Y. F., Ju, L. H., Zhang, L. Y. & Xu, G. H. Effects of AM fungi on plant growth and nitrogen and phosphorus utilization in rice/mungbean intercropping under different phosphorus application levels. Jiangsu Agric. Sci. 41, 51–55 (2013).

    CAS  Google Scholar 

  • 45.

    Kiers, E. T. et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333, 880–882 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 46.

    Read, D. J. Mycorrhizas in Ecosystems-Nature’s Response to the “Law of the Minimum”. (ed. Hawksworth, D.L.) 101–130 (CAB International, 1991).

  • 47.

    Sun, X. W. et al. Effects of eco-enviromental factors on the production and distribution of arbuscular mycorrhizal fungal spores. Acta Pratacult. Sin. 20, 214–221 (2011).

    Google Scholar 

  • 48.

    Sun, J. H., Bi, Y. L., Qiu, L. & Jiang, B. A review about the effect of AMF on uptaking phosphorus by host plants in soil. Chin. J. Soil Sci. 47, 499–504 (2016).

    Google Scholar 

  • 49.

    Subhashini, D. V. Effect of NPK fertilizers and co-inoculation with phosphate solubilising arbuscular mycorrhizal fungus and potassium mobilizing bacteria on growth, yield, nutrient acquisition and quality of tobacco (Nicotiana tabacum). Commun. Soil Sci. Plant Anal. 47, 328–337 (2016).

    CAS  Google Scholar 

  • 50.

    Johnson, N. C., Wilson, G. W. T., Wilson, J. A., Miller, R. M. & Bowker, M. A. Mycorrhizal phenotypes and the law of the minimum. New Phytol. 205, 1473–1484 (2015).

    CAS  PubMed  Google Scholar 

  • 51.

    Tessa, C. et al. Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Glob. Change Biol. 20, 3646–3659 (2014).

    Google Scholar 

  • 52.

    Gusewell, S. N: P ratios in terrestrial plants: variation and functional significance. New Phytol. 164, 243–266 (2004).

    Google Scholar 

  • 53.

    Xia, T. T., Wang, Z. P., Zhang, L. C. & Jing, H. R. Effects of phosphorus concentration on growth of arbuscular mycorrhizal sweet corn. Ind. Microbiol. 47, 49–53 (2017).

    Google Scholar 

  • 54.

    Qiu, J. J. Molecular mechanism of phosphorus uptake by the interaction of arbuscular mycorrhizal fungi and maize. PhD Thesis, Shandong Agricultural University (2017).

  • 55.

    Reay, D. S., Dentener, F., Smith, P., Grace, J. & Feely, R. A. Global nitrogen deposition and carbon sinks. Nat. Geosci. 1, 430–437 (2008).

    ADS  CAS  Google Scholar 

  • 56.

    Fang, H., Mo, J., Peng, S., Li, Z. & Wang, H. Cumulative effects of nitrogen additions on litter decomposition in three tropical forests in southern China. Plant Soil 297, 233–242 (2007).

    CAS  Google Scholar 

  • 57.

    Mo, J. et al. Response of nutrient dynamics of decomposing pine (Pinus massoniana) needles to simulated N deposition in a disturbed and a rehabilitated forest in tropical China. Ecol. Res. 22, 649–658 (2007).

    ADS  CAS  Google Scholar 

  • 58.

    Chen, Z. Y. et al. Relationship between growth and endogenous hormones of Chinese fir seedlings under low phosphorus stress. Sci. Silvae Sin. 52, 57–66 (2016).

    Google Scholar 

  • 59.

    Leng, H. N. et al. Effects of phosphorous stress on the growth and nitrogen and phosphorus absorption of different formosan sweet gum provenances. Chin. J. Appl. Ecol. 20, 754–760 (2009).

    CAS  Google Scholar 

  • 60.

    Wu, J. J. et al. Analysis of soil respiration and components in Castanopsis carlesii and Cunninghamia lanceolata plantations. Chin. J. Plant Ecol. 38, 45–53 (2014).

    Google Scholar 

  • 61.

    Yang, Y. R. et al. Community structure of arbuscular mycorrhizal fungi associated with Robinia pseudoacacia in uncontaminated and heavy metal contaminated soils. Soil Biol. Biochem. 86, 146–158 (2015).

    CAS  Google Scholar 

  • 62.

    Berch, S. M. & Kendrick, B. Vesicular-arbuscular mycorrhizae of southern Ontario ferns and fern-allies. Mycologia 74, 769–769 (1982).

    Google Scholar 

  • 63.

    McGonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L. & Swan, J. A. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol. 115, 495–501 (1990).

    Google Scholar 

  • 64.

    Gerdemann, J. W. & Nicolson, T. H. Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 46, 235–244 (1963).

    Google Scholar 

  • 65.

    Eom, A. H., Wilson, G. W. & Hartnett, D. C. Effects of ungulate grazers on arbuscular mycorrhizal symbiosis and fungal community structure in tallgrass prairie. Mycologia 93, 233–242 (2001).

    Google Scholar 

  • 66.

    Jackson, M. L. Soil chemical analysis. Soil Sci. 85, 288 (1973).

    Google Scholar 

  • 67.

    Olsen, S. R. Estimation of available phosphorus in soils by extraction with sodium bicarbonate (U.S. Government Printing Office, New York, 1954).

    Google Scholar 

  • 68.

    Hess, T. M. Tropical Soil Biology and Fertility: A Handbook of Methods. (eds Anderson, J. M. & Ingram, J. S. I.) 245–245 (CAB International, 1990).

  • 69.

    Zhang, W. R., Yang, G. J., Tu, X. N. & Zhang, P. Forestry Industry Standard of the People’s Republic of China: Forest Soil Analysis Method. (China Standards Press, 1999).


  • Source: Ecology - nature.com

    Engineering superpowered organisms for a more sustainable world

    Letter from President Reif: Tackling the grand challenges of climate change