in

Effects of precipitation and temperature on precipitation use efficiency of alpine grassland in Northern Tibet, China

  • 1.

    Xu, X. et al. Interannual variability in responses of belowground net primary productivity (NPP) and NPP partitioning to long-term warming and clipping in a tallgrass prairie. Global Change Biol. 18(5), 1648–1656 (2012).

    ADS  Article  Google Scholar 

  • 2.

    Hui, D. & Jackson, R. B. Geographical and interannual variability in biomass partitioning in grassland ecosystems: a synthesis of field data. New Phytol. 169(1), 85–93 (2006).

    CAS  Article  Google Scholar 

  • 3.

    Zhang, X. et al. Impact of prolonged drought on rainfall use efficiency using MODIS data across China in the early 21st century. Remote Sens. Environ. 150, 188–197 (2014).

    ADS  Article  Google Scholar 

  • 4.

    Jiang, Y. et al. Effects of community structure on precipitation-use efficiency of grasslands in Northern Tibet. J. Veg Sci. 28, 281–290 (2017).

    Article  Google Scholar 

  • 5.

    Roupsard, O. et al. Scaling-up productivity (NPP) using light or water use efficiencies (LUE, WUE) from a two-layer tropical plantation. Agrofor. Syst. 76(2), 409–422 (2009).

    Article  Google Scholar 

  • 6.

    Prince, S. D., De Colstoun, E. B. & Kravitz, L. L. Evidence from rain-use efficiencies does not indicate extensive Sahelian desertification. Global Change Biol. 4(4), 359–374 (1998).

    ADS  Article  Google Scholar 

  • 7.

    Fensholt, R. & Rasmussen, K. Analysis of trends in the Sahelian “rain-use efficiency” using GIMMS NDVI, RFE and GPCP rainfall data. Remote Sens. Environ. 115(2), 438–451 (2011).

    ADS  Article  Google Scholar 

  • 8.

    Ye, H., Wang, J., Huang, M. & Qi, S. Spatial pattern of vegetation precipitation use efficiency and its response to precipitation and temperature on the Qinghai-Xizang Plateau of China. Chin. J. Plant. Ecol. 36(12), 1237–1247 (2012).

    Article  Google Scholar 

  • 9.

    Bai, Y. et al. Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology 89(8), 2140–2153 (2008).

    Article  Google Scholar 

  • 10.

    Paruelo, J. M., Lauenroth, W. K., Burke, I. C. & Sala, O. E. Grassland precipitation-use efficiency varies across a resource gradient. Ecosystems 2(1), 64–68 (1999).

    Article  Google Scholar 

  • 11.

    Yang, Y., Fang, J., Fay, P. A., Bell, J. E. & Ji, C. Rain use efficiency across a precipitation gradient on the Tibetan Plateau. Geophys. Res. Lett. 37, L15702 (2010).

    ADS  Google Scholar 

  • 12.

    Li, H. X., Liu, G. H. & Fu, B. J. Spatial variations of rain-use efficiency along a climate gradient on the Tibetan Plateau: a satellite-based analysis. Int. J. Remote Sens. 34(21), 7487–7503 (2013).

    ADS  Article  Google Scholar 

  • 13.

    Huxman, T. E. et al. Convergence across biomes to a common rain-use efficiency. Nature 429(6992), 651–654 (2004).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Hu, Z. et al. Precipitation-use efficiency along a 4500-km grassland transect. Glob. Ecol. Biogeogr. 19(6), 842–851 (2010).

    Article  Google Scholar 

  • 15.

    Lauenroth, W. K., Burke, I. C. & Paruelo, J. M. Patterns of production and precipitation-use efficiency of winter wheat and native grasslands in the central Great Plains of the United States. Ecosystems 3(4), 344–351 (2000).

    Article  Google Scholar 

  • 16.

    Hooper, D. U. & Johnson, L. Nitrogen limitation in dryland ecosystems: Responses to geographical and temporal variation in precipitation. Biogeochemistry 46(1–3), 247–293 (1999).

    CAS  Google Scholar 

  • 17.

    Xu, X., Sherry, R. A., Niu, S., Li, D. & Luo, Y. Net primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairie. Global Change Biol. 19(9), 2753–2764 (2013).

    ADS  Article  Google Scholar 

  • 18.

    De Boeck, H. J. et al. How do climate warming and plant species richness affect water use in experimental grasslands?. Plant Soil 288(1–2), 249–261 (2006).

    ADS  Article  Google Scholar 

  • 19.

    Campos, G. E. P. et al. Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 494(7437), 349–352 (2013).

    ADS  Article  Google Scholar 

  • 20.

    Qiu, J., Zhang, H. & Shen, W. Spatial characteristics of precipitation use efficiency on the Qinghai-Tibet Plateau From 1982 to 2007. J. Fudan. Univ. Nat. Sci. 53(1), 126–133 (2014).

    Google Scholar 

  • 21.

    Wang, Q. W., Yu, D. P., Dai, L. M., Zhou, L. & Zhou, W. M. Research progress in water use efficiency of plants under global climate change. Chin. J. Appl. Ecol. 21(12), 3255–3265 (2000).

    Google Scholar 

  • 22.

    Chen, S. P., Bai, Y. F., Zhang, L. X. & Han, X. G. Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China. Environ. Exp. Bot. 53(1), 65–75 (2005).

    Article  Google Scholar 

  • 23.

    Qiu, J. The third pole. Nature 454(7203), 393–396 (2008).

    CAS  Article  Google Scholar 

  • 24.

    Chen, B. X. et al. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agric. For. Meteorol. 189, 11–18 (2014).

    ADS  Article  Google Scholar 

  • 25.

    Jiang, Y. B. et al. Effects of community structure on precipitation-use efficiency of grasslands in northern Tibet. J. Veg. Sci. 28, 281–290 (2017).

    Article  Google Scholar 

  • 26.

    Gao, Q. Z. et al. Effects of topography and human activity on the net primary productivity (NPP) of alpine grassland in northern Tibet from 1981 to 2004. Int. J. Remote Sens. 34(6), 2057–2069 (2013).

    ADS  Article  Google Scholar 

  • 27.

    Zhang, J. H., Yao, F. M., Zheng, L. G. & Yang, L. M. Evaluation of grassland dynamics in the Northern-Tibet Plateau of China using remote sensing and climate data. Sensors 7(12), 3312–3328 (2007).

    Article  Google Scholar 

  • 28.

    Li, Z., Huffman, T., McConkey, B. & Townley-Smith, L. Monitoring and modeling spatial and temporal patterns of grassland dynamics using time-series MODIS NDVI with climate and stocking data. Remote Sens. Environ. 138, 232–244 (2013).

    ADS  Article  Google Scholar 

  • 29.

    Zhang, X. K., Lu, X. Y. & Wang, X. D. Spatial-temporal NDVI variation of different alpine grassland classes and groups in Northern Tibet from 2000 to 2013. Mt. Res. Dev. 35(3), 254–263 (2015).

    Article  Google Scholar 

  • 30.

    Yu, D. Y., Shi, P. J., Shao, H. B., Zhu, W. Q. & Pan, Y. H. Modelling net primary productivity of terrestrial ecosystems in East Asia based on an improved CASA ecosystem model. Int. J. Remote Sens. 30(18), 4851–4866 (2009).

    ADS  Article  Google Scholar 

  • 31.

    Gao, Q. Z. et al. Dynamics of alpine grassland NPP and its response to climate change in Northern Tibet. Clim. Change 97(3–4), 515–528 (2009).

    ADS  CAS  Article  Google Scholar 

  • 32.

    Zhu, W. Q., Pan, Y. Z., He, H., Yu, D. Y. & Hu, H. B. Simulation of maximum light use efficiency for some typical vegetation types in China. Chin. Sci. Bull. 51(4), 457–463 (2006).

    CAS  Article  Google Scholar 

  • 33.

    Zhao, G. S. et al. Spatial-temporal variation of ANPP and rain-use efficiency along a precipitation gradient on Changtang Plateau, Tibet. Remote Sens. 11, 325 (2019).

    ADS  Article  Google Scholar 

  • 34.

    Sun, J. & Du, W. Effects of precipitation and temperature on net primary productivity and precipitation use efficiency across China’s grasslands. GISci. Remote Sens. 54(6), 881–897 (2017).

    Article  Google Scholar 

  • 35.

    Chen, Z. Q., Shao, Q. Q., Liu, J. Y. & Wang, J. B. Analysis of net primary productivity of terrestrial vegetation on the Qinghai-Tibet Plateau, based on MODIS remote sensing data. Sci. China Earth Sci. 55(8), 1306–1312 (2012).

    ADS  Article  Google Scholar 

  • 36.

    Piao, S. & Fang, J. Terrestrial net primary production and its spatio-temporal patterns in Qinghai-Xizang Plateau, China during 1982–1999. J. Nat. Resour. 03, 373–380 (2002).

    Google Scholar 

  • 37.

    Gao, Q. Z., Wan, Y. F., Li, Y. E., Lin, E. D. & Yang, K. Grassland net primary production and its spatiotemporal distribution in Northern Tibet: a study with CASA model. Chin. J. Appl. Ecol. 11, 2526–2532 (2007).

    Google Scholar 

  • 38.

    Zhou, C. P., Ouyang, H., Wang, Q. X., Watanabe, M. & Sun, Q. Q. Estimation net primary productivity in Tibetan Plateau. Acta Geogr. Sin. 01, 74–79 (2004).

    Google Scholar 

  • 39.

    Yang, Y. H. et al. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biol. 14, 1592–1599 (2008).

    ADS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Massive, swift federal investment needed to address climate change, panelists say

    Cracking the secrets of an emerging branch of physics