in

Effects of solid oxygen fertilizers and biochars on nitrous oxide production from agricultural soils in Florida

  • 1.

    Forster, P. et al. Changes in atmospheric constituents and in radiative forcing. Chapter 2. In Climate Change 2007. The Physical Science Basis. (Cambridge University Press, 2007).

  • 2.

    World Meteorological Organization. The State of Greenhouse Gases in the Atmosphere Based on Global Observation through 2017. WMO Greenhouse Gas Bulletin No. 14. https://library.wmo.int/doc_num.php?explnum_id=5455 (2018).

  • 3.

    Anderson, B., et al. Methane and nitrous oxide emissions from natural sources, Office of Atmospheric Programs, US EPA. EPA 430-R-10-001, Washington DC (2010).

  • 4.

    Bremner, J. M. Sources of nitrous oxide in soils. Nutr. Cycl. Agroecosyst. 49, 7–16 (1997).

    CAS  Article  Google Scholar 

  • 5.

    Brentrup, F., Küsters, J., Lammel, J. & Kuhlmann, H. Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. Int. J. Life Cycle Assess. 5, 349 (2000).

    CAS  Article  Google Scholar 

  • 6.

    Snyder, C. S., Bruulsema, T. W., Jensen, T. L. & Fixen, P. E. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric. Ecosyst. Environ. 133, 247–266 (2009).

    CAS  Article  Google Scholar 

  • 7.

    Enanga, E. M., Creed, I. F., Casson, N. J. & Beall, F. D. Summer storms trigger soil N2O efflux episodes in forested catchments. J. Geophys. Res. Biogeo. 121, 95–108 (2016).

    CAS  Article  Google Scholar 

  • 8.

    Stewart, D. J., Taylor, C. M., Reeves, C. E. & Mcquaid, J. B. Biogenic nitrogen oxide emissions from soils: Impact on NOx and ozone over West Africa during AMMA (African Monsoon Multidisciplinary Analysis): Observational study. Atmos. Chem. Phys. Eur. Geosci. Union 8, 2285–2297 (2008).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Kralova, M., Masscheleyn, P. H., Lindau, C. W. & Patrick, W. H. Jr. Production of dinitrogen and nitrous oxide in soil suspensions as affected by redox potential. Water Air Soil Poll. 61, 37–45 (1992).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Davidsson, T. E. & Ståhl, M. The influence of organic carbon on nitrogen transformations in five wetland soils. Soil Sci. Soc. Am. J. 64, 1129–1136 (2000).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Groffman, P. M. et al. Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry 93, 49–77 (2009).

    CAS  Article  Google Scholar 

  • 12.

    Vidon, P. et al. Hot spots and hot moments in riparian zones: Potential for improved water quality management1. J Am. Water Resour. As. 46, 278–298 (2010).

    CAS  Article  Google Scholar 

  • 13.

    Vidon, P., Jacinthe, P.-A., Liu, X., Fisher, K. & Baker, M. Hydrobiogeochemical controls on riparian nutrient and greenhouse gas dynamics: 10 years post-restoration. J Am. Water Resour. As. 50, 639–652 (2014).

    CAS  Article  Google Scholar 

  • 14.

    Liu, G., Li, Y., Migliaccio, K., Olczyk, T. & Alva, A. Oxygen amendment on growth and nitrogen use efficiency of flooded Italian basil. Int. J. Veg. Sci. 19, 217–227 (2013).

    Article  Google Scholar 

  • 15.

    Liu, G., Li, Y. & Fu, X. (SL206) Practices to minimize flooding damage to commercial vegetable production. https://edis.ifas.ufl.edu/ss425 (2019).

  • 16.

    Li, C., Frolking, S. & Frolking, T. A. A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. J. Geophys. Res. Atmos. 97, 9759–9776 (1992).

    ADS  CAS  Article  Google Scholar 

  • 17.

    Roque-Malo, S. & Kumar, P. Patterns of change in high frequency precipitation variability over North America. Sci. Rep. 7, 10853. https://doi.org/10.1038/s41598-017-10827-8 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 18.

    Corradi, R., M., Lambert, F., Ramirez-Villegas, J. & Challinor, A. Climate change affects rainfall patterns in crop-producing regions: Findings from the study “Emergence of robust precipitation changes across crop production areas in the 21st century”. In CCAFS Info Note. Wageningen, Netherlands: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) (2019).

  • 19.

    Liu, G., et al. 2020–2021 Vegetable Production Handbook: Chapter 2. Fertilizer Management for Vegetable Production in Florida. https://edis.ifas.ufl.edu/cv296 (2020).

  • 20.

    Lehmann, J., Gaunt, J. & Rondon, M. Bio-char Sequestration in Terrestrial Ecosystems – A Review. Mitig. Adapt. Strat. GL. 11, 403–427 (2006).

    Article  Google Scholar 

  • 21.

    Lehmann, J. & Joseph, S. Biochar for environmental management: An introduction. In Biochar for Environmental Management: Science, Technology, and Implementation (ed. Lehmann, J. & Joseph, S.) 33–46. (Routledge, 2015).

  • 22.

    Bera, T., Collins, H. P., Alva, A. K., Purakayastha, T. J. & Patra, A. K. Biochar and manure effluent effects on soil biochemical properties under corn production. Appl. Soil Ecol. 107, 360–367 (2016).

    Article  Google Scholar 

  • 23.

    Bera, T. et al. Influence of select bioenergy by-products on soil carbon and microbial activity: A laboratory study. Sci. Total Environ. 653, 1354–1363 (2019).

    ADS  CAS  Article  Google Scholar 

  • 24.

    Purakayastha, T. J. et al. A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security. Chemosphere 227, 345–365 (2019).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Zimmerman, A. R. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ. Sci. Technol. 44, 1295–1301 (2010).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Woolf, D., Amonette, J., Street-Perrott, F., Lehmann, J. & Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 1, 56 (2010).

    ADS  Article  Google Scholar 

  • 27.

    Mukherjee, A., Lal, R. & Zimmerman, A. R. Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. Sci. Total Environ. 487, 26–36 (2014).

    ADS  CAS  Article  Google Scholar 

  • 28.

    Lan, Z. M., Chen, C. R., Rashti, R. M., Yang, H. & Zhang, D. K. Stoichiometric ratio of dissolved organic carbon to nitrate regulates nitrous oxide emission from the biochar-amended soils. Soil Sci. Plant Nutr. 576, 559–571 (2017).

    CAS  Google Scholar 

  • 29.

    Yanai, Y., Toyota, K. & Okazaki, M. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci. Plant Nutr. 53, 181–188 (2007).

    CAS  Article  Google Scholar 

  • 30.

    Clough, T. J. et al. Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil. Soil Sci. Soc. Am. J. 74, 852–860 (2010).

    ADS  CAS  Article  Google Scholar 

  • 31.

    Singh, B. P. et al. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J. Environ. Qual. 39, 1224–1235 (2010).

    CAS  Article  Google Scholar 

  • 32.

    Cayuela, M. L. et al. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agric. Ecosyst. Environ. 191, 5–16 (2014).

    CAS  Article  Google Scholar 

  • 33.

    Cayuela, M. L. et al. Biochar and denitrification in soils: When, how much and why does biochar reduce N2O emissions?. Sci. Rep. 3, 1732 (2013).

    Article  Google Scholar 

  • 34.

    Liu, G. & Porterfield, D. M. Oxygen enrichment with magnesium peroxide for minimizing hypoxic stress of flooded corn. J. Plant Nutr. Soil Sci. 177, 733–740 (2014).

    CAS  Article  Google Scholar 

  • 35.

    Brady, N. C. & Weil, R. R. The Nature and Properties of Soils 1–187 (Prentice-Hall Inc., Upper Saddle River, 1999).

    Google Scholar 

  • 36.

    Weier, K. L., Doran, J. W., Power, J. F. & Walters, D. T. Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate. Soil Sci. Soc. Am. J. 57, 66–72 (1993).

    ADS  CAS  Article  Google Scholar 

  • 37.

    Ameloot, N. et al. Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biol. Biochem. 57, 401–410 (2013).

    CAS  Article  Google Scholar 

  • 38.

    Spokas, K. A. et al. Qualitative analysis of volatile organic compounds on biochar. Chemosphere 85, 869–882 (2011).

    ADS  CAS  Article  Google Scholar 

  • 39.

    Chendrayan, K., Adhya, T. K. & Sethunathan, N. Dehydrogenase and invertase activities of flooded soils. Soil Biol. Biochem. 12, 271–273 (1980).

    CAS  Article  Google Scholar 

  • 40.

    Macé, O. G., Steinauer, K., Jousset, A., Eisenhauer, N. & Scheu, S. Flood-induced changes in soil microbial functions as modified by plant diversity. PLoS ONE 11(11), e0166349. https://doi.org/10.1371/journal.pone.0166349 (2016).

    CAS  Article  Google Scholar 

  • 41.

    van Zwieten, L. et al. Influence of biochars on flux of N2O and CO2 from Ferrosol. Aust. J. Soil Res. 48, 555–568 (2010).

    Article  Google Scholar 

  • 42.

    Zheng, J., Stewart, C. E. & Cotrufo, F. M. Biochar and nitrogen fertilizer alters soil nitrogen dynamics and greenhouse gas fluxes from two temperate soils. J. Environ. Qual. 41, 1361–1370 (2012).

    CAS  Article  Google Scholar 

  • 43.

    Lu, S., Zhang, X. & Xue, Y. Application of calcium peroxide in water and soil treatment: A review. J. Hazard. Mater. 337, 163–177 (2017).

    ADS  CAS  Article  Google Scholar 

  • 44.

    Reyes-Cabrera, J. et al. Amending marginal sandy soils with biochar and lignocellulosic fermentation residual sustains fertility in elephantgrass bioenergy cropping systems. Nutr. Cycl. Agroecosyst. 115, 69–83 (2019).

    CAS  Article  Google Scholar 

  • 45.

    Zobeck, T. M. et al. Soil property effects on wind erosion of organic soils. Aeolian Res. 10, 43–51 (2013).

    ADS  Article  Google Scholar 

  • 46.

    Collins, M. E. Key to soil orders in Florida. University of Florida Cooperative Extension Service, Institute of Food and Agriculture Sciences, EDIS (2009).

  • 47.

    Bera, T., Purakayastha, T. J., Patra, A. K. & Datta, S. C. Comparative analysis of physicochemical, nutrient, and spectral properties of agricultural residue biochars as influenced by pyrolysis temperatures. J. Mater. Cycles Waste 20, 1115–1127 (2018).

    CAS  Article  Google Scholar 

  • 48.

    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. Microbial biomass measurements in forest soils: The use of the chloroform fumigation-incubation method in strongly acid soils. Soil Biol. Biochem. 19, 697–702 (1987).

    CAS  Article  Google Scholar 

  • 49.

    Butnan, S., Deenik, J. L., Toomsan, B. M., Antal, J. & Vityakon, P. Biochar properties influencing greenhouse gas emissions in tropical soils differing in texture and mineralogy. J. Environ. Qual. 45, 1509–1519 (2016).

    CAS  Article  Google Scholar 

  • 50.

    SAS Institute Inc. Base SAS 9.4 Procedures Guide, 5th ed. SAS Institute Inc., Cary (2015).

    Google Scholar 


  • Source: Ecology - nature.com

    Amanda Hubbard honored with Secretary of Energy’s Appreciation Award

    Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences