in

Effects of substratum and depth on benthic harmful dinoflagellate assemblages

  • 1.

    Berdalet, E. et al. Harmful algal blooms in benthic systems: recent progress and future research. Oceanography 30, 36–45 (2017).

    Google Scholar 

  • 2.

    Yasumoto, T., Inoue, A., Bagnis, R. & Garcon, M. Ecological survey on a dinoflagellate possibly responsible for the induction of ciguatera. Bull. Jpn. Soc. Sci. Fish. 45, 395–399 (1979).

    Google Scholar 

  • 3.

    Shimizu, Y. et al. Gambierdiscus toxicus, a ciguatera-causing dinoflagellate from Hawaii. Bull. Jpn. Soc. Sci. Fish. 48, 811–813 (1982).

    Google Scholar 

  • 4.

    Chinain, M., Germain, M., Deparis, X., Pauillac, S. & Legrand, A.-M. Seasonal abundance and toxicity of the dinoflagellate Gambierdiscus spp. (Dinophyceae), the causative agent of ciguatera in Tahiti, French Polynesia. Mar. Biol. 135, 259–267 (1999).

    Google Scholar 

  • 5.

    Litaker, R. W. et al. Ciguatoxicity of Gambierdiscus and Fukuyoa species from the Caribbean and Gulf of Mexico. PLoS ONE 12(10), e0185776 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 6.

    Yasumoto, T. et al. Environmental studies on a toxic dinoflagellate responsible for ciguatera. Nippon Suisan Gakkaishi 46, 1397–1404 (1980).

    CAS  Google Scholar 

  • 7.

    Roué, M. et al. Evidence of the bioaccumulation of ciguatoxins in giant clams (Tridacna maxima) exposed to Gambierdiscus spp. cells. Harmful Algae 57, 78–87 (2016).

    PubMed  Google Scholar 

  • 8.

    Darius, H. T. et al. Tectus niloticus (Tegulidae, Gastropod) as a novel vector of ciguatera poisoning: detection of Pacific ciguatoxins in toxic samples from Nuku Hiva Island (French Polynesia). Toxins 10, 2. https://doi.org/10.3390/toxins10010002 (2018).

    CAS  Article  Google Scholar 

  • 9.

    Darius, H. T. et al. Toxicological investigations on the sea urchin Tripneustes gratilla (Toxopneustidae, Echinoid) from Anaho Bay (Nuku Hiva, French Polynesia): evidence for the presence of Pacific ciguatoxins. Mar. Drugs 16(4), 122. https://doi.org/10.3390/md16040122 (2018).

    CAS  Article  PubMed Central  Google Scholar 

  • 10.

    Friedman, M. et al. An updated review of Ciguatera Fish Poisoning: clinical, epidemiological, environmental, and public health management. Mar. Drugs 15(3), 72 (2017).

    PubMed Central  Google Scholar 

  • 11.

    Lehane, L. & Lewis, R. J. Ciguatera: recent advances but the risk remains. Int. J. Food Microbiol. 61, 91–125 (2000).

    CAS  PubMed  Google Scholar 

  • 12.

    Lewis, R. J. The changing face of ciguatera. Toxicon 39, 97–106 (2001).

    CAS  PubMed  Google Scholar 

  • 13.

    Ciminiello, P. et al. The Genoa 2005 outbreak. Determination of putative palytoxin in Mediterranean Ostreopsis ovata by a new liquid chromatography tandem mass spectrometry method. Anal. Chem. 78, 6153–6159 (2006).

    CAS  PubMed  Google Scholar 

  • 14.

    Ciminiello, P. et al. Putative palytoxin and its new analogue, ovatoxin-a, in Ostreopsis ovata collected along the Ligurian coasts during the 2006 toxic outbreak. J. Am. Soc. Mass Spectrom. 19, 111–120 (2008).

    CAS  PubMed  Google Scholar 

  • 15.

    Ciminiello, P. et al. Complex palytoxin-like profile of Ostreopsis ovate. identification of four new ovatoxins by high-resolution liquid chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 24, 2735–2744 (2010).

    ADS  CAS  PubMed  Google Scholar 

  • 16.

    Vila, M., Abós-Herràndiz, R., Isern-Fontanet, J., Àlvarez, J. & Berdalet, E. Establishing the link between Ostreopsis cf. ovata blooms and human health impacts using ecology and epidemiology. Sci. Mar. 80(S1), 107–115 (2016).

    CAS  Google Scholar 

  • 17.

    Durando, P. et al. Ostreopsis ovata and human health: epidemiological and clinical features of respiratory syndrome outbreaks from a two-year syndromic surveillance, 2005–06, in north-west Italy. Eurosurveillance 12(6), E070607 (2007).

    PubMed  Google Scholar 

  • 18.

    Onuma, Y. et al. Identification of putative palytoxin as the cause of clupeotoxism. Toxicon 37, 55–65 (1999).

    CAS  PubMed  Google Scholar 

  • 19.

    Aligizaki, K., Katikou, P., Milandri, A. & Diogène, J. Occurrence of palytoxin-group toxins in seafood and future strategies to complement the present state of the art. Toxicon 57, 390–399 (2011).

    CAS  PubMed  Google Scholar 

  • 20.

    Alcala, A. C., Alcala, L. C., Garth, J. S., Yasumura, D. & Yasumoto, T. Human fatality due to ingestion of the crab Demania reynaudii that contained a palytoxin-like toxin. Toxicon 26, 105–107 (1988).

    CAS  PubMed  Google Scholar 

  • 21.

    Taniyama, S. The occurrence of palytoxin-like poisoning and ciguatera in parts of the mainland of Japan. Nippon Suisan Gakkaishi 74, 917–918 (2008).

    CAS  Google Scholar 

  • 22.

    Ramos, V. & Vasconcelos, V. Palytoxin and analogs: biological and ecological effects. Mar. Drugs 8, 2021–2037 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 23.

    Faimali, M. et al. Toxic effects of harmful benthic dinoflagellate Ostreopsis ovata on invertebrate and vertebrate marine organisms. Mar. Environ. Res. 76, 97–107 (2012).

    CAS  PubMed  Google Scholar 

  • 24.

    Simonini, R., Orlandi, M. & Abbate, M. Is the toxic dinoflagellate Ostreopsis cf. ovata harmful to Mediterranean benthic invertebrates? Evidences from ecotoxicological tests with the polychaete Dinophilus gyrociliatus. Mar. Environ. Res. 72, 230–233 (2011).

    CAS  PubMed  Google Scholar 

  • 25.

    Privitera, D. et al. Toxic effects of Ostreopsis ovata on larvae and juveniles of Paracentrotus lividus. Harmful Algae 18, 16–23 (2012).

    Google Scholar 

  • 26.

    Neves, R. A., Contins, M. & Nascimento, S. M. Effects of the toxic benthic dinoflagellate Ostreopsis cf. ovata on fertilization and early development of the sea urchin Lytechinus variegatus. Mar. Environ. Res. 135, 11–17 (2018).

    CAS  PubMed  Google Scholar 

  • 27.

    Gorbi, S. et al. Effects of harmful dinoflagellate Ostreopsis cf. ovata exposure on immunological, histological and oxidative responses of mussels Mytilus galloprovincialis. Fish Shellfish Immunol. 35, 941–950 (2013).

    CAS  PubMed  Google Scholar 

  • 28.

    Vale, C. & Ares, I. R. Biochemistry of palytoxins and ostreocins. In Phycotoxins: Chemistry and Biochemistry (ed. Botana, L.) 95–118 (Blackwell Publishing, Oxford, 2007).

    Google Scholar 

  • 29.

    Shears, N. T. & Ross, P. M. Blooms of benthic dinoflagellates of the genus Ostreopsis; an increasing and ecologically important phenomenon on temperate reefs in New Zealand and worldwide. Harmful Algae 8, 916–925 (2009).

    Google Scholar 

  • 30.

    Totti, C., Accoroni, S., Cerino, F., Cucchiari, E. & Romagnoli, T. Ostreopsis ovata bloom along the Conero Riviera (northern Adriatic Sea): relationships with environmental conditions and substrata. Harmful Algae 9, 233–239 (2010).

    Google Scholar 

  • 31.

    Murakami, Y., Oshima, Y. & Yasumoto, T. Identification of okadaic acid as a toxic component of a marine dinoflagellate Prorocentrum lima. Bull. Jpn. Soc. Sci. Fish. 48, 69–72 (1982).

    CAS  Google Scholar 

  • 32.

    Yasumoto, T., Murata, M., Oshima, Y., Matsumoto, G. & Clardy, J. Diarrhetic shellfish poisoning . In Seafood Toxins (ed. Ragelis, E. P.) 207–214 (American Chemical Society, Washington, 1984).

    Google Scholar 

  • 33.

    Morton, S. L. & Bomber, J. W. Maximizing okadaic acid content from Prorocentrum hoffmannianum Faust. J. Appl. Phycol. 6, 41–44 (1994).

    CAS  Google Scholar 

  • 34.

    Ten-Hage, L. et al. Okadaic acid production from the marine benthic dinoflagellate Prorocentrum arenarium Faust (Dinophyceae) isolated from Europa Island coral reef ecosystem (SW Indian Ocean). Toxicon 38, 1043–1054 (2000).

    CAS  PubMed  Google Scholar 

  • 35.

    Faust, M. A., Vandersea, M. W., Kibler, S. R., Tester, P. A. & Litaker, R. W. Prorocentrum levis, a new benthic species (Dinophyceae) from a mangrove island, Twin Cays, Belize. J. Phycol. 44, 232–240 (2008).

    CAS  PubMed  Google Scholar 

  • 36.

    An, T., Winshell, J., Scorzetti, G., Fell, J. W. & Rein, K. S. Identification of okadaic acid production in the marine dinoflagellate Prorocentrum rhathymum from Florida Bay. Toxicon 55, 653–657 (2010).

    CAS  PubMed  Google Scholar 

  • 37.

    Luo, Z. et al. Morphology, molecular phylogeny and okadaic acid production of epibenthic Prorocentrum (Dinophyceae) species from the northern South China Sea. Algal Res. 22, 14–30 (2017).

    Google Scholar 

  • 38.

    Lim, Z. F. et al. Taxonomy and toxicity of Prorocentrum from Perhentian Islands (Malaysia), with a description of a non-toxigenic species Prorocentrum malayense sp. Nov. (Dinophyceae). Harmful Algae 83, 95–108 (2019).

    CAS  PubMed  Google Scholar 

  • 39.

    Lawrence, J. E., Grant, J., Quilliam, M. A., Bauder, A. G. & Cembella, A. D. Colonization and growth of the toxic dinoflagellate Prorocentrum lima and associated fouling macroalgae on mussels in suspended culture. Mar. Ecol. Prog. Ser. 201, 147–154 (2000).

    ADS  Google Scholar 

  • 40.

    Levasseur, M. et al. Pelagic and epiphytic summer distributions of Prorocentrum lima and P. mexicanum at two mussel farms in the Gulf of St. Lawrence, Canada. Aquat. Microb. Ecol. 30, 283–293 (2003).

    Google Scholar 

  • 41.

    Foden, J., Purdie, D. A., Morris, S. & Nascimento, S. Epiphytic abundance and toxicity of Prorocentrum lima populations in the Fleet Lagoon, UK. Harmful Algae 4, 1063–1074 (2005).

    CAS  Google Scholar 

  • 42.

    Kobayashi, J. et al. Amphidinolide C: the first twenty-five membered macrocyclic lactone with potent antineoplastic activity from the cultured dinoflagellate Amphidinium sp. J. Am. Chem. Soc. 110, 490–494 (1988).

    CAS  Google Scholar 

  • 43.

    Holmes, M. J., Lewis, R. J., Jones, A. & Hoy, A. W. W. Cooliatoxin, the first toxin from Coolia monotis (Dinophyceae). Nat. Toxins 3, 355–362 (1995).

    CAS  PubMed  Google Scholar 

  • 44.

    Kobayashi, J. I. & Kubota, T. Bioactive macrolides and polyketides from marine dinoflagellates of the genus Amphidinium. J. Nat. Prod. 70, 451–460 (2007).

    CAS  PubMed  Google Scholar 

  • 45.

    Kobayashi, J. I. Amphidinolides and its related macrolides from marine dinoflagellates. J. Antibiot. 61, 271–284 (2008).

    CAS  PubMed  Google Scholar 

  • 46.

    Pagliara, P. & Caroppo, C. Toxicity assessment of Amphidinium carterae, Coolia cfr. monotis and Ostreopsis cfr. ovata (Dinophyta) isolated from the northern Ionian Sea (Mediterranean Sea). Toxicon 60, 1203–1214 (2012).

    CAS  PubMed  Google Scholar 

  • 47.

    Wakeman, K. C., Yamaguchi, A., Roy, M. C. & Jenke-Kodama, H. Morphology, phylogeny and novel chemical compounds from Coolia malayensis (Dinophyceae) from Okinawa, Japan. Harmful Algae 44, 8–19 (2015).

    CAS  Google Scholar 

  • 48.

    Karafas, S., Teng, S. T., Leaw, C. P. & Alves-de-Souza, C. An evaluation of the genus Amphidinium (Dinophyceae) combining evidence from morphology, phylogenetics, and toxin production, with the introduction of six novel species. Harmful Algae 68, 128–151 (2017).

    PubMed  Google Scholar 

  • 49.

    Ballantine, D. L., Tosteson, T. R. & Bardales, A. T. Population dynamics and toxicity of natural populations of benthic dinoflagellates in southwestern Puerto Rico. J. Exp. Mar. Biol. Ecol. 119, 201–212 (1988).

    Google Scholar 

  • 50.

    Bomber, J. W. & Aikman, K. E. The ciguatera dinoflagellates. Biol. Oceanogr. 6, 291–311 (1989).

    Google Scholar 

  • 51.

    Bomber, J. W., Rubio, M. G. & Norris, D. R. Epiphytism of dinoflagellates associated with the disease ciguatera: substrate specificity and nutrition. Phycologia 28, 360–368 (1989).

    Google Scholar 

  • 52.

    Faust, M. A. Observation of sand-dwelling toxic dinoflagellates (Dinophyceae) from widely differing sites, including two new species. J. Phycol. 31, 996–1003 (1995).

    Google Scholar 

  • 53.

    Tindall, D. R. & Morton, S. L. Community dynamics and physiology of epiphytic/benthic dinoflagellates associated with ciguatera. In Physiological Ecology of Harmful Algal Blooms (eds Anderson, D. M. et al.) 293–314 (Springer, Berlin, 1998).

    Google Scholar 

  • 54.

    Kibler, S. R., Litaker, R. W., Holland, W. C., Vandersea, M. W. & Tester, P. A. Growth of eight Gambierdiscus (Dinophyceae) species: effects of temperature, salinity and irradiance. Harmful Algae 19, 1–14 (2012).

    Google Scholar 

  • 55.

    Kibler, S. R., Tester, P. A., Kunkel, K. E., Moore, S. K. & Litaker, R. W. Effects of ocean warming on growth and distribution of dinoflagellates associated with ciguatera fish poisoning in the Caribbean. Ecol. Model. 136, 194–210 (2015).

    Google Scholar 

  • 56.

    Kibler, S. R. et al. Gambierdiscus and Fukuyoa species in the greater Caribbean: regional growth projections for ciguatera-associated dinoflagellates. Ecol. Model. 360, 201–218 (2017).

    Google Scholar 

  • 57.

    Xu, Y. et al. Influence of environmental variables on Gambierdiscus spp. (Dinophyceae) growth and distribution. PLoS ONE 11(4), e0153197 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 58.

    David, H., Kromkamp, J. C. & Orive, E. Relationship between strains of Coolia monotis (Dinophyceae) from the Atlantic Iberian Peninsula and their sampling sites. J. Exp. Mar. Biol. Ecol. 487, 59–67 (2017).

    Google Scholar 

  • 59.

    David, H., Laza-Martínez, A., Kromkamp, J. C. & Orive, E. Pysiological response of Prorocentrum lima (Dinophyceae) to varying light intensities. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fix166 (2018).

    Article  PubMed  Google Scholar 

  • 60.

    Larsson, M. E., Smith, K. F. & Doblin, M. A. First description of the environmental niche of the epibenthic dinoflagellate species Coolia palmyrensis, C. malayensis, and C. tropicalis (Dinophyceae) from eastern Australia. J. Phycol. 55, 565–577 (2019).

    CAS  PubMed  Google Scholar 

  • 61.

    Richlen, M. L. & Lobel, P. S. Effects of depth, habitat, and water motion on the abundance and distribution of ciguatera dinoflagellates at Johnston Atoll, Pacific Ocean. Mar. Ecol. Prog. Ser. 421, 51–66 (2011).

    ADS  Google Scholar 

  • 62.

    Meroni, L., Chiantore, M., Petrillo, M. & Asnaghi, V. Habitat effects on Ostreopsis cf. ovata bloom dynamics. Harmful Algae 80, 64–71 (2018).

    CAS  PubMed  Google Scholar 

  • 63.

    Yong, H. L. et al. Habitat complexity affects benthic harmful dinoflagellate assemblages in the fringing reef of Rawa Island, Malaysia. Harmful Algae 78, 56–86 (2018).

    PubMed  Google Scholar 

  • 64.

    Tester, P. A., Litaker, R. W. & Berdalet, E. Climate change and harmful benthic microalgae. Harmful Algae https://doi.org/10.1016/j.hal.2019.101655 (2020).

    Article  PubMed  Google Scholar 

  • 65.

    Randall, J. E. A review of ciguatera, tropical fish poisoning, with a tentative explanation of its cause. Bull. Mar. Sci. 8, 236–267 (1958).

    Google Scholar 

  • 66.

    Chateau-Degat, M. L. et al. Seawater temperature, Gambierdiscus spp. variability and incidence of ciguatera poisoning in French Polynesia. Harmful Algae 4, 1053–1062 (2005).

    CAS  Google Scholar 

  • 67.

    Rongo, T. & van Woesik, R. Ciguatera poisoning in Rarotonga, southern Cook islands. Harmful Algae 10, 345–355 (2011).

    Google Scholar 

  • 68.

    Rongo, T. & van Woesik, R. The effects of natural disturbances, reef state, and herbivorous fish densities on ciguatera poisoning in Rarotonga, southern Cook Islands. Toxicon 64, 87–95 (2013).

    CAS  PubMed  Google Scholar 

  • 69.

    Chinain, M., Darius, H. T., Gatti, C. M. & Roué, M. Update on ciguatera research in French Polynesia. SPC Fish. Newsl. 150, 43–51 (2016).

    Google Scholar 

  • 70.

    Tester, P. A. et al. Sampling harmful benthic dinoflagellates: comparison of artificial and natural substrate methods. Harmful Algae 39, 8–25 (2014).

    Google Scholar 

  • 71.

    Jauzein, C., Fricke, A., Mangialajo, L. & Lemée, R. Sampling of Ostreopsis cf. ovata using artificial substrates: optimization of methods for the monitoring of benthic harmful algal blooms. Mar. Poll. Bull. 107(1), 300–304 (2016).

    CAS  Google Scholar 

  • 72.

    Jauzein, C. et al. Optimization of sampling, cell collection and counting for the monitoring of benthic harmful algal blooms: application to Ostreopsis spp. blooms in the Mediterranean Sea. Ecol. Indic. 91, 116–127 (2018).

    Google Scholar 

  • 73.

    Beijbom, O. et al. Towards automated annotation of benthic survey images: variability of human experts and operational modes of automation. PLoS ONE 10(7), e0130312 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 74.

    Hammer, Ø, Harper, D. A. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4(1), 9 (2001).

    Google Scholar 

  • 75.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2009).

    Google Scholar 

  • 76.

    Oksanen, J. et al. vegan: Community Ecology Package, version 2.4.2 ed. R Package (2017).

  • 77.

    Core Team, R. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2019).

    Google Scholar 

  • 78.

    Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18(1), 117–143 (1993).

    Google Scholar 

  • 79.

    Ploner, A. Heatplus: Heatmaps with Row and/or Column Covariates and Colored Clusters, 2.20.0 ed. R package (2015).

  • 80.

    Tan, T. H., Lim, P. T., Mujahid, A., Usup, G. & Leaw, C. P. Benthic harmful dinoflagellate assemblages in a fringing reef of Sampadi Island, Sarawak, Malaysia. Mar. Res. Indon. 38(2), 77–87 (2015).

    Google Scholar 

  • 81.

    Fernández-Zabala, J., Tuya, F., Amorim, A. & Soler Onís, E. Benthic dinoflagellates: testing the reliability of the artificial substrate method in the Macaronesian region. Harmful Algae 87, 101634. https://doi.org/10.1016/j.hal.2019.101634 (2019).

    Article  PubMed  Google Scholar 

  • 82.

    Vila, M., Garcés, E. & Masó, M. Potentially toxic epiphytic dinoflagellate assemblages on macroalgae in the NW Mediterranean. Aquat. Microb. Ecol. 26, 51–60 (2001).

    Google Scholar 

  • 83.

    Parsons, M. L. & Preskitt, L. B. A survey of epiphytic dinoflagellates from the coastal waters of the island of Hawai‘i. Harmful Algae 6, 658–669 (2007).

    CAS  Google Scholar 

  • 84.

    Aligizaki, K. & Nikolaidis, G. The presence of the potentially toxic genera Ostreopsis and Coolia (Dinophyceae) in the North Aegean Sea, Greece. Harmful Algae 5, 717–730 (2006).

    Google Scholar 

  • 85.

    Accoroni, S. et al. Ostreopsis cf. ovata bloom in the northern Adriatic Sea during summer 2009: ecology, molecular characterization and toxin profile. Mar. Poll. Bull. 62, 2512–2519 (2011).

    CAS  Google Scholar 

  • 86.

    Accoroni, S. & Totti, C. The toxic benthic dinoflagellates of the genus Ostreopsis in temperate areas: a review. Adv. Oceanogr. Limnol. https://doi.org/10.4081/aiol.2016.5591 (2016).

    Article  Google Scholar 

  • 87.

    Mangialajo, L. et al. Trends in Ostreopsis proliferation along the Northern Mediterranean coasts. Toxicon 57, 408–420 (2011).

    CAS  PubMed  Google Scholar 

  • 88.

    Blanfuné, A., Boudouresque, C. F., Grossel, H. & Thibaut, T. Distribution and abundance of Ostreopsis spp. and associated species (Dinophyceae) in the northwestern Mediterranean: the region and the macroalgal substrate matter. Environ. Sci. Pollut. Res. 22, 12332–12346 (2015).

    Google Scholar 

  • 89.

    Mangialajo, L. et al. Benthic Dinoflagellate Integrator (BEDI): a new method for the quantification of benthic harmful algal blooms. Harmful Algae 64, 1–10 (2017).

    PubMed  Google Scholar 

  • 90.

    Parsons, M. L., Settlemier, C. J. & Bienfang, P. K. A simple model capable of simulating the population dynamics of Gambierdiscus, the benthic dinoflagellate responsible for ciguatera fish poisoning. Harmful Algae 10, 71–80 (2010).

    Google Scholar 

  • 91.

    Lobel, P. S., Anderson, D. M. & Durand-Clement, M. Assessment of Ciguatera dinoflagellate populations: sample variability and algal substrate selection. Biol. Bull. 175, 94–101 (1988).

    Google Scholar 

  • 92.

    Gregg, W. W. & Rose, F. L. The effects of aquatic macrophytes on the stream microenvironment. Aquat. Bot. 14, 309–324 (1982).

    Google Scholar 

  • 93.

    Kovalenko, K. E., Thomaz, S. M. & Warfe, D. M. Habitat complexity: approaches and future directions. Hydrobiologia 685, 1–17 (2012).

    Google Scholar 

  • 94.

    Loeffler, C. R., Richlen, M. L., Brandt, M. E. & Smith, T. B. Effects of grazing, nutrients, and depth on the ciguatera-causing dinoflagellate Gambierdiscus in the US Virgin Islands. Mar. Ecol. Prog. Ser. 531, 91–104 (2015).

    ADS  CAS  Google Scholar 

  • 95.

    Fraga, S., Rodríguez, F., Bravo, I., Zapata, M. & Marañón, E. Review of the main ecological features affecting benthic dinoflagellate blooms. Cryptogam. Algol. 33, 171–179 (2012).

    Google Scholar 

  • 96.

    Nakahara, H., Sakami, T., Chinain, M. & Ishida, Y. The role of macroalgae in epiphytism of the toxic dinoflagellate Gambierdiscus toxicus (Dinophyceae). Phycol. Res. 44, 113–117 (1996).

    Google Scholar 

  • 97.

    Villareal, T. A. & Morton, S. L. Use of cell-specific PAM-fluorometry to characterize host shading in the epiphytic dinoflagellate Gambierdiscus toxicus. Mar. Ecol. 23, 127–140 (2002).

    ADS  Google Scholar 

  • 98.

    Monti, M. & Cecchin, E. Comparative growth of three strains of Ostreopsis ovata at different light intensities with focus on inter-specific allelopathic interactions. Cryptogam. Algol. 33, 113–119 (2012).

    Google Scholar 

  • 99.

    Zapata, M., Fraga, S., Rodríguez, F. & Garrido, J. L. Pigment-based chloroplast types in dinoflagellates. Mar. Ecol. Prog. Ser. 465, 33–52 (2012).

    ADS  CAS  Google Scholar 

  • 100.

    Yamaguchi, H., Tomori, Y., Tanimoto, Y., Oku, O. & Adachi, M. Evaluation of the effects of light intensity on growth of the benthic dinoflagellate Ostreopsis sp. 1 using a newly developed photoirradiation-culture system and a novel regression analytical method. Harmful Algae 39, 48–54 (2014).

    Google Scholar 


  • Source: Ecology - nature.com

    Quantitative comparison between the rhizosphere effect of Arabidopsis thaliana and co-occurring plant species with a longer life history

    A new approach to carbon capture