in

Effects of temperature variability and extremes on spring phenology across the contiguous United States from 1982 to 2016

  • 1.

    Chuine, I. et al. Historical phenology: grape ripening as a past climate indicator. Nature 432, 289 (2004).

    ADS  CAS  Article  Google Scholar 

  • 2.

    Hufkens, K., Basler, D., Milliman, T., Melaas, E. K. & Richardson, A. D. An integrated phenology modelling framework in r. Methods Ecol. Evol. 9, 1276–1285. https://doi.org/10.1111/2041-210x.12970 (2018).

    Article  Google Scholar 

  • 3.

    Zhu, K. & Wan, M. A productive science—phenology. In Public Science (1963).

  • 4.

    Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature526, 104–107, doi:https://doi.org/10.1038/nature15402. https://www.nature.com/nature/journal/v526/n7571/abs/nature15402.html#supplementary-information (2015).

  • 5.

    Jochner, S., Sparks, T. H., Laube, J. & Menzel, A. Can we detect a nonlinear response to temperature in European plant phenology?. Int. J. Biometeorol. 60, 1551–1561. https://doi.org/10.1007/s00484-016-1146-7 (2016).

    ADS  Article  PubMed  Google Scholar 

  • 6.

    D’orangeville, L. et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Glob. Change Biol. (2018).

  • 7.

    Ganguly, S., Friedl, M. A., Tan, B., Zhang, X. & Verma, M. Land surface phenology from MODIS: characterization of the collection 5 global land cover dynamics product. Remote Sens. Environ. 114, 1805–1816 (2010).

    ADS  Article  Google Scholar 

  • 8.

    Zhang, X. et al. Generation and evaluation of the VIIRS land surface phenology product. Remote Sens. Environ. 216, 212–229. https://doi.org/10.1016/j.rse.2018.06.047 (2018).

    ADS  Article  Google Scholar 

  • 9.

    de Beurs, K. M. & Henebry, G. M. Land surface phenology, climatic variation, and institutional change: analyzing agricultural land cover change in Kazakhstan. Remote Sens. Environ. 89, 497–509 (2004).

    ADS  Article  Google Scholar 

  • 10.

    Liu, L., Zhang, X., Donnelly, A. & Liu, X. Interannual variations in spring phenology and their response to climate change across the Tibetan Plateau from 1982 to 2013. Int. J. Biometeorol. 60, 1563–1575. https://doi.org/10.1007/s00484-016-1147-6 (2016).

    ADS  Article  PubMed  Google Scholar 

  • 11.

    Adole, T., Dash, J. & Atkinson, P. M. Major trends in the land surface phenology (LSP) of Africa, controlling for land-cover change. Int. J. Remote Sens. https://doi.org/10.1080/01431161.2018.1479797 (2018).

    Article  Google Scholar 

  • 12.

    Xu, C., Liu, H., Williams, A. P., Yin, Y. & Wu, X. Trends toward an earlier peak of the growing season in Northern Hemisphere mid-latitudes. Glob. Change Biol. 22, 2852–2860 (2016).

    ADS  Article  Google Scholar 

  • 13.

    Zhang, X., Tarpley, D. & Sullivan, J. T. Diverse responses of vegetation phenology to a warming climate. Geophys. Res. Lett. 34, L19405 (2007).

    ADS  Article  Google Scholar 

  • 14.

    Jeong, S.-J., Ho, C.-H., Gim, H.-J. & Brown, M. E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob. Change Biol. 17, 2385–2399. https://doi.org/10.1111/j.1365-2486.2011.02397.x (2011).

  • 15.

    Reed, B. Trend analysis of time-series phenology of North America derived from satellite data. GISci. Remote Sens. 43, 24–38 (2006).

    Article  Google Scholar 

  • 16.

    White, M. A. et al. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Glob. Chang Biol. 15, 2335–2359. https://doi.org/10.1111/j.1365-2486.2009.01910.x (2009).

    ADS  Article  Google Scholar 

  • 17.

    Pelletier, J. D. & Turcotte, D. L. In Advances in Geophysics vol 40 (eds Renata Dmowska & Barry Saltzman) 91–166 (Elsevier, Amsterdam, 1999).

  • 18.

    Zhang, X., Tan, B. & Yu, Y. Interannual variations and trends in global land surface phenology derived from enhanced vegetation index during 1982–2010. Int. J. Biometeorol. 58, 547–564. https://doi.org/10.1007/s00484-014-0802-z (2014).

    ADS  Article  PubMed  Google Scholar 

  • 19.

    Melaas, E. K., Friedl, M. A. & Zhu, Z. Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data. Remote Sens. Environ. 132, 176–185. https://doi.org/10.1016/j.rse.2013.01.011 (2013).

    ADS  Article  Google Scholar 

  • 20.

    Friedl, M. A. et al. A tale of two springs: using recent climate anomalies to characterize the sensitivity of temperate forest phenology to climate change. Environ. Res. Lett. 9, 054006 (2014).

    ADS  Article  Google Scholar 

  • 21.

    Wang, T., Peng, S., Lin, X. & Chang, J. Declining snow cover may affect spring phenological trend on the Tibetan Plateau. Proc. Natl. Acad. Sci. 110, E2854–E2855. https://doi.org/10.1073/pnas.1306157110 (2013).

    ADS  Article  PubMed  Google Scholar 

  • 22.

    Reed, B., Budde, M., Spencer, P. & Miller, A. Integration of MODIS-derived metrics to assess interannual variability in snowpack, lake ice, and NDVI in southwest Alaska. Remote Sens. Environ. 113, 1443–1452 (2009).

    ADS  Article  Google Scholar 

  • 23.

    Dong, J., Zhang, G., Zhang, Y. & Xiao, X. Reply to Wang et al.: Snow cover and air temperature affect the rate of changes in spring phenology in the Tibetan Plateau. Proc. Natl. Acad. Sci. 110, E2856-E2857. https://doi.org/10.1073/pnas.1306813110 (2013).

  • 24.

    Richardson, A. D. et al. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American carbon program site synthesis. Glob. Change Biol. 18, 566–584 (2012).

    ADS  Article  Google Scholar 

  • 25.

    Keenan, T. et al. Terrestrial biosphere model performance for inter-annual variability of land-atmosphere CO2 exchange. Glob. Change Biol. 18, 1971–1987 (2012).

    ADS  Article  Google Scholar 

  • 26.

    Liu, F. et al. Influences of agricultural phenology dynamic on land surface biophysical process and climate feedback. J. Geogr. Sci. 27, 1085–1099. https://doi.org/10.1007/s11442-017-1423-3 (2017).

    Article  Google Scholar 

  • 27.

    Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Bio.l 25, 1922–1940. https://doi.org/10.1111/gcb.14619 (2019).

  • 28.

    Patz, J. A., Campbell-Lendrum, D., Holloway, T. & Foley, J. A. Impact of regional climate change on human health. Nature 438, 310. https://doi.org/10.1038/nature04188 (2005).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 29.

    Kharin, V. V. et al. Risks from climate extremes change differently from 1.5 to 2.0°C depending on rarity. Earth’s Future 6, 704–715. https://doi.org/10.1002/2018EF000813 (2018).

  • 30.

    Upperman, C. R. et al. Exposure to extreme heat events is associated with increased hay fever prevalence among nationally representative sample of US adults: 1997–2013. J. Allergy Clin. Immunol. Pract. 5(435), e432-441.e432 (2017).

    Google Scholar 

  • 31.

    Stéfanon, M., Drobinski, P., & D’Andrea, F. Noblet-Ducoudré of interactive vegetation phenology on the, 2003 summer heat waves. J. Geophys. Res. Atmos. https://doi.org/10.1029/2012JD018187 (2012).

    Article  Google Scholar 

  • 32.

    Wolf, S. et al. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc. Natl. Acad. Sci. 113, 5880–5885. https://doi.org/10.1073/pnas.1519620113 (2016).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 33.

    Fischer, E. M., Seneviratne, S. I., Vidale, P. L., Luthi, D. & Schar, C. Soil moisture—atmosphere interactions during the 2003 European summer heat wave. J. Clim. 20, 5081–5099. https://doi.org/10.1175/Jcli4288.1 (2007).

    ADS  Article  Google Scholar 

  • 34.

    Zaitchik, B. F., Macalady, A. K., Bonneau, L. R. & Smith, R. B. Europe’s 2003 heat wave: a satellite view of impacts and land-atmosphere feedbacks. Int. J. Climatol. 26, 743–769. https://doi.org/10.1002/joc.1280 (2006).

    Article  Google Scholar 

  • 35.

    Dunne, J. P., Stouffer, R. J. & John, J. G. Reductions in labour capacity from heat stress under climate warming. Nat. Climate Change3, 563. https://doi.org/10.1038/nclimate1827. https://www.nature.com/articles/nclimate1827#supplementary-information (2013).

  • 36.

    Mazdiyasni, O. et al. Increasing probability of mortality during Indian heat waves. Sci. Adv. https://doi.org/10.1126/sciadv.1700066 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 37.

    Alexandrov, V. A. & Hoogenboom, G. The impact of climate variability and change on crop yield in Bulgaria. Agric. For. Meteorol. 104, 315–327. https://doi.org/10.1016/S0168-1923(00)00166-0 (2000).

    ADS  Article  Google Scholar 

  • 38.

    Siegmund, J. F., Wiedermann, M., Donges, J. F. & Donner, R. V. Impact of temperature and precipitation extremes on the flowering dates of four German wildlife shrub species. Biogeosciences 13, 5541–5555 (2016).

    ADS  Article  Google Scholar 

  • 39.

    Ummenhofer, C. C. & Meehl, G. A. Extreme weather and climate events with ecological relevance: a review. Philos. Trans. R. Soc. B Biol. Sci. https://doi.org/10.1098/rstb.2016.0135 (2017).

  • 40.

    Pedelty, J. et al. In 2007 IEEE International Geoscience and Remote Sensing Symposium 1021–1025.

  • 41.

    Rocha, A. V. & Shaver, G. R. Advantages of a two band EVI calculated from solar and photosynthetically active radiation fluxes. Agric. For. Meteorol. 149, 1560–1563. https://doi.org/10.1016/j.agrformet.2009.03.016 (2009).

    ADS  Article  Google Scholar 

  • 42.

    Huete, A. R. et al. Amazon rainforests green-up with sunlight in dry season. Geophys. Res. Lett. 33, L06405. https://doi.org/10.1029/2005gl025583 (2006).

    ADS  Article  Google Scholar 

  • 43.

    Huete, A., Miura, T., Yoshioka, H., Ratana, P. & Broich, M. in Biophysical Applications of Satellite Remote Sensing (ed Jonathan M. Hanes) 1–41 (Spring, 2013).

  • 44.

    Zhang, Q. Y. et al. Estimating light absorption by chlorophyll, leaf and canopy in a deciduous broadleaf forest using MODIS data and a radiative transfer model. Remote Sens. Environ. 99, 357–371 (2005).

    ADS  Article  Google Scholar 

  • 45.

    Zhang, Q. Y. et al. Can a satellite-derived estimate of the fraction of PAR absorbed by chlorophyll (FAPAR(chl)) improve predictions of light-use efficiency and ecosystem photosynthesis for a boreal aspen forest?. Remote Sens. Environ. 113, 880–888 (2009).

    ADS  Article  Google Scholar 

  • 46.

    White, K., Pontius, J. & Schaberg, P. Remote sensing of spring phenology in northeastern forests: a comparison of methods, field metrics and sources of uncertainty. Remote Sens. Environ. 148, 97–107. https://doi.org/10.1016/j.rse.2014.03.017 (2014).

    ADS  Article  Google Scholar 

  • 47.

    Peng, D. et al. Spring green-up phenology products derived from MODIS NDVI and EVI: intercomparison, interpretation and validation using national phenology network and AmeriFlux observations. Ecol. Indic. 77, 323–336 (2017).

    Article  Google Scholar 

  • 48.

    Karkauskaite, P., Tagesson, T. & Fensholt, R. Evaluation of the Plant Phenology Index (PPI), NDVI and EVI for start-of-season trend analysis of the northern hemisphere boreal zone. Remote Sens. Basel. https://doi.org/10.3390/rs9050485 (2017).

    Article  Google Scholar 

  • 49.

    Klosterman, S. T. et al. Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery. Biogeosciences 11, 4305–4320. https://doi.org/10.5194/bg-11-4305-2014 (2014).

    ADS  Article  Google Scholar 

  • 50.

    Zhang, X. Y. et al. Evaluation of land surface phenology from VIIRS data using time series of phenocam imagery. Agric. For. Meteorol. 256–257, 137–149 (2018).

    ADS  Article  Google Scholar 

  • 51.

    Zhang, X. Reconstruction of a complete global time series of daily vegetation index trajectory from long-term AVHRR data. Remote Sens. Environ 156, 457–472. https://doi.org/10.1016/j.rse.2014.10.012 (2015).

    ADS  Article  Google Scholar 

  • 52.

    Kogan, F., Gitelson, A., Zakarin, E., Spivak, L. & Lebed, L. AVHRR-based spectral vegetation index for quantitative assessment of vegetation state and productivity. Photogram. Eng. Remote Sens. 69, 899–906 (2003).

    Article  Google Scholar 

  • 53.

    Zhang, X. Y. et al. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 84, 471–475 (2003).

    ADS  Article  Google Scholar 

  • 54.

    Zhang, X., Friedl, M. A. & Schaaf, C. B. Global vegetation phenology from moderate resolution imaging spectroradiometer (MODIS): evaluation of global patterns and comparison with in situ measurements. J. Geophys. Res. 111, G04017 (2006).

    ADS  Google Scholar 

  • 55.

    Richardson, A. D. et al. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Physiol. 29, 321–331. https://doi.org/10.1093/treephys/tpn040 (2009).

    CAS  Article  PubMed  Google Scholar 

  • 56.

    Donnelly, A., Liu, L., Zhang, X. & Wingler, A. Autumn leaf phenology: discrepancies between in situ observations and satellite data at urban and rural sites. Int. J. Remote Sens. 39, 8129–8150. https://doi.org/10.1080/01431161.2018.1482021 (2018).

    ADS  Article  Google Scholar 

  • 57.

    Badeck, F. et al. Responses of spring phenology to climate change. New Phytol. 162, 295–309. https://doi.org/10.1111/j.1469-8137.2004.01059.x (2004).

    Article  Google Scholar 

  • 58.

    Mesinger, F. et al. North American regional reanalysis. Bull. Am. Meteorol. Soc. 87, 343–360 (2006).

    ADS  Article  Google Scholar 

  • 59.

    Luo, Y., Berbery, E. H., Mitchell, K. E. & Betts, A. K. Relationships between land surface and near-surface atmospheric variables in the NCEP North American Regional Reanalysis. J. Hydrometeorol. 8, 1184–1203 (2007).

    ADS  Article  Google Scholar 

  • 60.

    Reidmiller, D. R. et al. (eds) US Global Change Research Program (USGCRP Washington, DC, 2018).

    Google Scholar 

  • 61.

    Los, S. O., Collatz, G. J., Bounoua, L., Sellers, P. J. & Tucker, C. J. Global interannual variations in sea surface temperature and land surface vegetation, air temperature, and precipitation. J. Climate 14, 1535–1549. https://doi.org/10.1175/1520-0442(2001)014%3c1535:giviss%3e2.0.co;2 (2001).

    ADS  Article  Google Scholar 

  • 62.

    Myneni, R. B., Tucker, C. J., Asrar, G. & Keeling, C. D. Interannual variations in satellite-sensed vegetation index data from 1981 to 1991. J. Geophys. Res. 103, 6145–6160 (1998).

    ADS  Article  Google Scholar 

  • 63.

    Chen, X. Q. & Xu, L. Phenological responses of Ulmus pumila (Siberian Elm) to climate change in the temperate zone of China. Int. J. Biometeorol. 56, 695–706 (2012).

    ADS  Article  Google Scholar 

  • 64.

    Matsumoto, K., Ohta, T., Irasawa, M. & Nakamura, T. Climate change and extension of the Ginkgo biloba L. growing season in Japan. Glob. Change Biol. 9, 1634–1642 (2003).

  • 65.

    Liu, L., Zhang, X., Yu, Y. & Donnelly, A. Detecting spatiotemporal changes of peak foliage coloration in deciduous and mixedforests across the Central and Eastern United States. Environ. Res. Lett. 12, 024013 (2017).

    ADS  Article  Google Scholar 

  • 66.

    Beniston, M. et al. Future extreme events in European climate: an exploration of regional climate model projections. Clim. Change 81, 71–95. https://doi.org/10.1007/s10584-006-9226-z (2007).

    Article  Google Scholar 

  • 67.

    Rummukainen, M. Changes in climate and weather extremes in the 21st century. Wiley Interdiscip. Rev. Climate Change 3, 115–129. https://doi.org/10.1002/wcc.160 (2012).

    Article  Google Scholar 

  • 68.

    Melaas, E. K., Sulla-Menashe, D. & Friedl, M. A. Multi-decadal changes and interannual variation in springtime phenology of North American temperate and boreal deciduous forests (Geophys. Res, Lett, 2018).

    Google Scholar 

  • 69.

    Papineau, J. M. Wintertime temperature anomalies in Alaska correlated with ENSO and PDO. Int. J. Climatol. 21, 1577–1592. https://doi.org/10.1002/joc.686 (2001).

    Article  Google Scholar 

  • 70.

    Willis, J. K., Roemmich, D. & Cornuelle, B. Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J. Geophys. Res. Oceans. https://doi.org/10.1029/2003jc002260 (2004).

    Article  Google Scholar 

  • 71.

    Knapp, A. K. & Smith, M. D. Variation among biomes in temporal dynamics of aboveground primary production. Science 291, 481–484. https://doi.org/10.1126/science.291.5503.481 (2001).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 72.

    Fang, J., Piao, S., Tang, Z., Peng, C. & Ji, W. Interannual variability in net primary production and precipitation. Science 293, 1723–1723. https://doi.org/10.1126/science.293.5536.1723a (2001).

    CAS  Article  PubMed  Google Scholar 

  • 73.

    Peaucelle, M. et al. Spatial variance of spring phenology in temperate deciduous forests is constrained by background climatic conditions. Nat. Commun. 10, 5388. https://doi.org/10.1038/s41467-019-13365-1 (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 74.

    Marchand, L. J. et al. Inter-individual variability in spring phenology of temperate deciduous trees depends on species, tree size and previous year autumn phenology. Agric. For. Meteorol. 290, 108031. https://doi.org/10.1016/j.agrformet.2020.108031 (2020).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 75.

    Zhang, J., Zheng, H., Zhang, X. & VanLooy, J. Changes in regional snowfall in Central North America (1961–2017): mountain versus plains. Geosciences 10, 157 (2020).

    ADS  CAS  Article  Google Scholar 

  • 76.

    Sacks, W. J., Deryng, D., Foley, J. A. & Ramankutty, N. Crop planting dates: an analysis of global patterns. Global Ecol. Biogeogr. 19, 607–620 (2010).

    Google Scholar 

  • 77.

    Lobell, D. B. et al. Prioritizing climate change adaptation needs for food security in 2030. Science 319, 607 (2008).

    CAS  Article  Google Scholar 

  • 78.

    Howden, S. M. et al. Adapting agriculture to climate change. Proc. Natl. Acad. Sci. 104, 19691 (2007).

    ADS  CAS  Article  Google Scholar 

  • 79.

    Olesen, J. E. et al. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 34, 96–112. https://doi.org/10.1016/j.eja.2010.11.003 (2011).

    Article  Google Scholar 

  • 80.

    Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Climate Change 4, 287. https://doi.org/10.1038/nclimate2153. https://www.nature.com/articles/nclimate2153#supplementary-information (2014).

  • 81.

    Myneni, R., Keeling, C., Tucker, C., Asrar, G. & Nemani, R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997).

    ADS  CAS  Article  Google Scholar 

  • 82.

    Peñuelas, J. & Filella, I. Responses to a warming world. Science 294, 793–795 (2001).

    Article  Google Scholar 

  • 83.

    Cayan, D. R., Kammerdiener, S. A., Dettinger, M. D., Caprio, J. M. & Peterson, D. H. Changes in the onset of spring in the Western United States. Bull. Am. Meteorol. Soc. 82, 399–416. https://doi.org/10.1175/1520-0477(2001)082%3c0399:CITOOS%3e2.3.CO;2 (2001).

    ADS  Article  Google Scholar 

  • 84.

    Zheng, C. et al. Climatic anomaly and its impact on vegetation phenology, carbon sequestration and water-use efficiency at a humid temperate forest. J. Hydrol. 565, 150–159. https://doi.org/10.1016/j.jhydrol.2018.08.012 (2018).

    ADS  CAS  Article  Google Scholar 

  • 85.

    CaraDonna, P. J., Iler, A. M. & Inouye, D. W. Shifts in flowering phenology reshape a subalpine plant community. Proc. Natl. Acad. Sci. 111, 4916 (2014).

    ADS  CAS  Article  Google Scholar 

  • 86.

    Allen, M. R. et al. IPCC fifth assessment synthesis report-climate change 2014 synthesis report (2014).

  • 87.

    Friedlingstein, P. et al. Global carbon budget 2019(11), 1783–1838 (2019).

    Google Scholar 

  • 88.

    Ogunbode, C. A., Doran, R. & Böhm, G. Exposure to the IPCC special report on 1.5 °C global warming is linked to perceived threat and increased concern about climate change. Climate Change 158, 361–375.https://doi.org/10.1007/s10584-019-02609-0 (2020).

  • 89.

    Diffenbaugh, N. S. et al. Quantifying the influence of global warming on unprecedented extreme climate events. Proc. Natl. Acad. Sci. 114, 4881 (2017).

    ADS  CAS  Article  Google Scholar 

  • 90.

    Teshome, A. & Zhang, J. Increase of extreme drought over ethiopia under climate warming. Adv. Meteorol. https://doi.org/10.1155/2019/5235429 (2019).

    Article  Google Scholar 

  • 91.

    Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H. & Liu, Z. Monitoring the response of vegetation phenology to precipitation in Africa by coupling MODIS and TRMM instruments. J. Geophys. Res. Atmos. https://doi.org/10.1029/2004JD005263 (2005).

    Article  Google Scholar 

  • 92.

    Wang, J. & Zhang, X. Impacts of wildfires on interannual trends in land surface phenology: an investigation of the Hayman Fire. Environ. Res. Lett. 12, 054008 (2017).

    ADS  Article  Google Scholar 

  • 93.

    Morton, D. C. et al. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc. Natl. Acad. Sci. 103, 14637 (2006).

    ADS  CAS  Article  Google Scholar 

  • 94.

    Xin, Q., Broich, M., Zhu, P. & Gong, P. Modeling grassland spring onset across the Western United States using climate variables and MODIS-derived phenology metrics. Remote Sens. Environ. 161, 63–77. https://doi.org/10.1016/j.rse.2015.02.003 (2015).

    ADS  Article  Google Scholar 

  • 95.

    Peng, D. et al. Scaling effects on spring phenology detections from MODIS data at multiple spatial resolutions over the contiguous United States. ISPRS J. Photogram. Remote Sens. 132, 185–198. https://doi.org/10.1016/j.isprsjprs.2017.09.002 (2017).

    ADS  Article  Google Scholar 

  • 96.

    Jentsch, A., Kreyling, J., Boettcher-Treschkow, J. & Beierkuhnlein, C. Beyond gradual warming: extreme weather events alter flower phenology of European grassland and heath species. Glob. Change Biol. 15, 837–849. https://doi.org/10.1111/j.1365-2486.2008.01690.x (2009).

    ADS  Article  Google Scholar 

  • 97.

    Nagy, L., Kreyling, J., Gellesch, E., Beierkuhnlein, C. & Jentsch, A. Recurring weather extremes alter the flowering phenology of two common temperate shrubs. Int. J. Biometeorol. 57, 579–588. https://doi.org/10.1007/s00484-012-0585-z (2013).

    ADS  CAS  Article  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Deep learning-assisted comparative analysis of animal trajectories with DeepHL

    Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization